首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Alzheimer’s disease (AD) is a neurodegenerative disorder associated with cognitive and behavioral dysfunction and is the leading cause of dementia in the elderly. Several studies have implicated molecular and cellular signaling cascades involving the serine-threonine kinase, glycogen synthase kinase β(GSK-3β) in the pathogenesis of AD. GSK-3β may play an important role in the formation of neurofibrillary tangles and senile plaques, the two classical pathological hallmarks of AD. In this review, we discuss the interaction between GSK-3β and several key molecules involved in AD, including the presenilins, amyloid precursor protein, tau, and β-amyloid. We identify the signal transduction pathways involved in the pathogenesis of AD, including Wnt, Notch, and the PI3 kinase/Akt pathway. These may be potential therapeutic targets in AD. Received 19 December 2005; received after revision 24 January 2006; accepted 6 February 2006  相似文献   

3.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer’s disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed. Received 3 December 2006; received after revision 23 February 2007; accepted 20 March 2007  相似文献   

4.
Functions and malfunctions of the tau proteins   总被引:9,自引:1,他引:8  
The tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play major regulatory roles in the organization and integrity of the cytoskeleton network. Neurofibrillary changes of abnormally hyperphosphorylated tau are a key lesion in Alzheimer's disease and a number of other tauopathies. However, despite an ever-increasing body of data on the changes which tau undergoes in disease, its role regarding the fundamental disease process is still unclear. Moreover, conceptions of tau functions continue to evolve, which complicates an understanding of its role in the disease process. This review attempts to summarize data on the role of tau proteins in the context of both normal cellular function and dysfunction. Furthermore, we try to develop a mechanistic framework for the involvement of tau during the disease process. The review closes with a look towards various approaches to elucidate the functions and malfunctions of tau. Received 21 June 2002; received after revision 24 July 2002; accepted 29 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

5.
The identification of the aspartic protease BACE1 (β-secretase) was a defining event in research aimed at understanding the molecular mechanisms that underlie Alzheimer’s disease (AD) pathogenesis. This is because BACE1 catalyses the rate limiting step in the production of amyloid-β (Aβ) the principal component of plaque pathology in AD, the excessive production of which is believed to be a primary cause of neurodegeneration, and cognitive dysfunction in AD. Subsequent discoveries showed that genetic deletion of BACE1 completely abolishes Aβ production and deposition in vivo, and that BACE1 activity is significantly increased in AD brain. In this review we present current knowledge on BACE1, discussing its structure, function and complex regulation with a view to understanding BACE1 function in the brain, and BACE1 as a target in blocking aberrant Aβ production in AD. Received 15 May 2008; received after revision 13 June 2008; accepted 18 June 2008  相似文献   

6.
Inhibiting the production of amyloid-β by antagonising γ-secretase activity is currently being pursued as a therapeutic strategy for Alzheimer’s disease (AD). However, early pre-clinical studies have demonstrated that disruption of presenilin-dependent γ-secretase alters many presenilin-dependent processes, leading to early lethality in several AD model organisms. Subsequently, transgenic animal studies have highlighted several gross developmental side effects arising from presenilin deficiency. Partial knockdown or tissue-specific knockout of presenilins has identified the skin, vascular and immune systems as very sensitive to loss of presenilin functions. A more appreciative understanding of presenilin biology is therefore demanded if γ-secretase is to be pursued as a therapeutic target. Herein we review the current understanding of γ-secretase complexes; their regulation, abundance of interacting partners and diversity of substrates. We also discuss regulation of the γ-secretase complexes, with an emphasis on the functional role of presenilins in cell biology. Received 25 July 2008; received after revision 24 November 2008; accepted 10 December 2008  相似文献   

7.
Arterial dissection (AD) is defined as the longitudinal splitting up of the arterial wall caused by intramural bleeding. It can occur as a spontaneous event in all large and medium sized arteries. The histological hallmark of AD is medial degeneration. Histological investigations, gene expression profiling and proteome studies of affected arteries reveal disturbances in many different biological processes including inflammation, proteolytic activity, cell proliferation, apoptosis and smooth muscle cell (SMC) contractile function. Medial degeneration can be caused by various rare dominant Mendelian disorders. Genetic linkage analysis lead to the identification of mutations in different disease-causing genes involved in the biosynthesis of the extracellular matrix (FBN1, COL3A1), in transforming growth factor (TGF) beta signaling (FBN1, TGFBR1, TGFBR2) and in the SMC contractile system (ACTA2, MYH11). Genome wide association studies suggest that the CDKN2A/CDKN2B locus plays a role in the etiology AD and other arterial diseases.  相似文献   

8.
The choroid plexuses (CP) release numerous biologically active enzymes and neurotrophic factors, and contain a subpopulation of neural progenitor cells providing the capacity to proliferate and differentiate into other types of cells. These characteristics make CP epithelial cells (CPECs) excellent candidates for cell therapy aiming at restoring brain tissue in neurodegenerative illnesses, including Alzheimer’s disease (AD). In the present study, using in vitro approaches, we demonstrated that CP were able to diminish amyloid-β (Aβ) levels in cell cultures, reducing Aβ-induced neurotoxicity. For in vivo studies, CPECs were transplanted into the brain of the APP/PS1 murine model of AD that exhibits advanced Aβ accumulation and memory impairment. Brain examination after cell implantation revealed a significant reduction in brain Aβ deposits, hyperphosphorylation of tau, and astrocytic reactivity. Remarkably, the transplantation of CPECs was accompanied by a total behavioral recovery in APP/PS1 mice, improving spatial and non-spatial memory. These findings reinforce the neuroprotective potential of CPECs and the use of cell therapies as useful tools in AD.  相似文献   

9.
Even though the etiology of Alzheimer’s disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.  相似文献   

10.
Tau, a major microtubule-associated protein of the neuron, which is known to promote the assembly of and to stabilize microtubules, has also been seen associated with chromatin in neuronal cell lines, but its role in this subcellular compartment is still unknown. In this study, the binding of tau to DNA was investigated using the electrophoretic mobility shift assay. Using polynucleotide as probe, we found that tau bound to double-stranded but not to single-stranded DNA. Formation of tau-polynucleotide complex was disrupted by alkaline pH and a high concentration of NaCl, but was not affected by dithiothreitol. Electron microscopy revealed that the protein associated with the nucleic acid in a necklacelike manner. DNA-cellulose chromatography and radioimmunodot-blot analyses showed that calf thymus histones VI-S, VII-S and VIII-S could replace both recombinant human brain tau352 (tau-23) and tau441 (tau-40) from DNA. Thus, tau appears to bind to DNA reversibly in the presence of histones. Received 24 November 2002; received after revision 28 December 2002; accepted 30 December 2002 RID="*" ID="*"Corresponding author.  相似文献   

11.
Alzheimer’s disease (AD) is characterized by an accumulation in the brain of amyloid β peptides (Aβ). The production of Aβ requires two sequential cleavages induced by β- and γ-secretases on the β-amyloid precursor protein (APP). Altered activity of these secretases is involved in the pathogenesis of AD. The expression and activity of β-secretase (BACE1) is augmented in the brain in late-onset sporadic AD. Mutant presenilin 1 (PS1), the major genetic defect of early-onset familial AD (FAD), alters the activity of γ-secretase, leading to increased production of Aβ42. Here we review the role of oxidative stress as a molecular link between the β- and the γ-secretase activities, and provide a mechanistic explanation of the pathogenesis of sporadic late-onset AD. We also discuss evidence for a role of the same mechanism in the pathogenesis of familial AD carrying PS1 mutations.  相似文献   

12.
Alzheimer's disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide.  相似文献   

13.
Common features between diabetes mellitus and Alzheimer’s disease   总被引:1,自引:1,他引:0  
Epidemiological studies establish a link between Type 2 diabetes (T2DM) and Alzheimer’s disease (AD), both leading causes of morbidity and mortality in the elderly. These diseases also share clinical and biochemical features suggesting common pathogenic mechanisms. Specifically, both are amyloidoses as they are characterized by fibrillar protein aggregates – amylin in T2DM pancreatic islets, and β-amyloid (Aβ) and neurofibrillary tangles (NFTs) in AD brain. Amylin aggregation is associated with pancreatic β-cell loss, and Aβ and NFT formation with neuronal cell loss. We discuss the possibility that amylin and Aβ exert their toxicity by similar mechanisms, with components of the pathocascades shared, and that therapies based on amyloidogenic properties are beneficial for both T2DM and AD. Received 27 January 2009; received after revision 17 February 2009; accepted 23 February 2009  相似文献   

14.
15.
Deposition of amyloid β-protein (Aβ) in the brain is an early and invariant neuropathological feature of Alzheimer’s disease (AD). The current search for anti-AD drugs is mainly focused on modification of the process of accumulation of Aβ in the brain. Here, we review four anti-amyloidogenic strategies: (i) reduction of Aβ production, which has mainly been approached with secretase inhibition, (ii) promotion of the Aβ degrading catabolic pathway, including an Aβ degrading enzyme, neprilysin, (iii) immunotherapy for Aβ and (iv) inhibition of Aβ aggregation. We have reported that AD patients have a favorable molecular environment for Aβ aggregation and that various compounds, such as polyphenols, interfere with Aβ aggregation and destabilize preformed Aβ fibrils. Received 21 December 2005; received after revision 14 February 2006; accepted 29 March 2006  相似文献   

16.
17.
Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer’s disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer’s disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones.  相似文献   

18.
During the last decade, interest has grown in the beneficial effects of non-steroidal anti-inflammatory drugs (NSAIDs) in neurodegeneration, particularly in pathologies such as Alzheimer’s (AD) and Parkinson’s (PD) disease. Evidence from epidemiological studies has indicated a decreased risk for AD and PD in patients with a history of chronic NSAID use. However, clinical trials with NSAIDs in AD patients have yielded conflicting results, suggesting that these drugs may be beneficial only when used as preventive therapy or in early stages of the disease. NSAIDs may also have salutary effects in other neurodegenerative diseases with an inflammatory component, such as multiple sclerosis and amyotrophic lateral sclerosis. In this review we analyze the molecular (cyclooxygenases, secretases, NF-κB, PPAR, or Rho-GTPasas) and cellular (neurons, microglia, astrocytes or endothelial cells) targets of NSAIDs that may mediate the therapeutic function of these drugs in neurodegeneration. Received 4 December 2006; received after revision 24 January 2007; accepted 23 February 2007  相似文献   

19.
20.
阿尔茨海默病(Alzheimer's disease,AD)是老年人最常见的神经系统退行性疾病.经β-和γ-分泌酶切割形成的β淀粉样蛋白(amyloid-beta,Aβ)与AD的发生密切相关.γ-分泌酶是一个含有早老素的复合蛋白体,作为Aβ代谢的关键酶,它是治疗AD的潜力的靶点.在过去20年里,药物研究且发现了能抑制或调节γ-分泌酶的小分子化合物,部分化合物已经进入临床研究.本文就Aβ的形成、γ-分泌酶的结构及目前γ-分泌酶的抑制剂、调节剂的研究进展作一综述介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号