首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential usage of Copper (Cu) is very limited, where combined mechanical and thermal properties are desirable, which can be overcome by using carbon nanotube (CNT) as a reinforcement. An attempt was made to synthesize Cu/CNT composites by varying CNT diameter and its concentration through a molecular level mixing technique followed by uniaxial compaction and conventional sintering. The sintering behaviour of Cu and Cu/CNT composites was studied to understand the influence of different parameters. The sintering duration of Copper was decreased with an increase of CNT diameter. The maximum enhancement of properties was achieved at 0.25 wt.% CNT irrespective of its diameter, where the thermal conductivity and hardness were obtained as 328 W/mK at 20–40 nm diameter CNT composites and 81.2 ± 2.9 VHN at 40–60 nm diameter CNT composites, respectively. The conventional method of synthesize can generate the desired characteristics of composites at par with high end techniques, such as SPS.  相似文献   

2.
A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0–10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications.  相似文献   

3.
A combination of low coefficient of thermal expansion (CTE) and decent thermal conductivity (TC) is the reason for the Al-high vol% Si system to become popular for electronic packaging material. In the present work, two process routes, firstly conventional powder metallurgy and then spark plasma sintering (SPS) were utilized for the fabrication of Al-20-60 wt.% Si composites. In addition, effect of small fraction of CNT addition on the CTE of Al-20?wt% Si was studied. Effect of process parameters on the consolidation of the composites in terms of densification, microstructure evolution along with fractographic analysis and strength was studied. CTE and TC of the sintered composites were measured and correlated with the densification, percentage of Si and morphologies of the sintered products. Overall, better densification could be achieved in SPS and the Al-30%Si and Al-40%Si composites SPSed at 550?°C showed average CTE values of 14.52?×?10?6/K and 13.36?×?10?6/K, respectively, in the temperature range of 30–200?°C, which were better than some of the existing alloys with higher Si content. Simultaneously, TC values were 114.4?W/mK and 107.12?W/mK, respectively, for the above two SPSed composites.  相似文献   

4.
Cu/diamond composites were fabricated by spark plasma sintering (SPS) after the surface pretreatment of the diamond powders, in which the diamond particles were mixed with copper powder and tungsten powder (carbide forming element W). The effects of the pretreatment temperature and the diamond particle size on the thermal conductivity of diamond/copper composites were investigated. It was found that when 300 μm diamond particles and Cu–5 wt.% W were mixed and preheated at 1313 K, the composites has a relatively higher density and its thermal conductivity approaches 672 W (m K)−1.  相似文献   

5.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

6.
In this paper, multi-walled carbon nanotubes (CNT) were dispersed in D-Mannitol to prepare enhanced thermal conductive nanocomposites phase change materials (PCM) with 0.1% and 0.5% weight fraction. The PCM were tested for 100 thermal cycles and characterized by using techniques such as Differential Scanning Calorimetry (DSC), Thremogravimetric analyser (TGA) and Fourier Transform Infrared (FT-IR). The effect of adding CNT on energy storage/release performance of DM was experimentally studied. Maximum thermal conductivity enhancement was found to be ~7% and ~32% respectively for 0.1–0.5?wt.% DM-CNT composites. It was observed from the crystallization kinetics study of DM that addition of CNT resulted in lowering the crystallization of DM. However after thermal cycling, the latent heat capacities decreased yet showed a high latent heat enthalpy of 241.16?kJ/kg. Experimental results showed that the total time for complete cycle reduced by ~25.7% for 0.5?wt.% DM-CNT. The analysis of the experimental results indicate that the proposed PCM nanocomposites exhibit excellent thermal and chemical stability with enhanced heat transfer characteristics.  相似文献   

7.
In this study, the mechanical and thermal properties of epoxy composites using two different forms of carbon nanotubes (powder and masterbatch) were investigated. Composites were prepared by loading the surface-modified CNT powder and/or CNT masterbatch into either ductile or brittle epoxy matrices. The results show that 3 wt.% CNT masterbatch enhances Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and 21.1 °C increment in the glass transition temperature (by 34%) of ductile epoxy matrix. From scanning electron microscopy images, it was observed that the CNT masterbatch was uniformly distributed indicating the pre-dispersed CNTs in the masterbatch allow an easier path for preparation of CNT-epoxy composites with reduced agglomeration of CNTs. These results demonstrate a good CNT dispersion and ductility of epoxy matrix play a key role to achieve high performance CNT-epoxy composites.  相似文献   

8.
Carbon nanotubes (CNT) exhibit excellent thermal conductivity.Therefore they are potential reinforcements in composites materials for thermal management applications,where high thermal conductivity and low coefficient of thermal expansion (CTE) are required.In the present study,CNT/Cu composites containing CNTs varying from 0 vol.% to 15 vol.% were prepared,and their thermal conductivity behavior was studied in detail.The results indicated that the thermal conductivity of the composites shows no enhancement by the incorporation of CNTs.The presence of interfacial thermal resistance and high level of porosity are the main reasons for this low thermal conductivity.The well dispersed 0-10 vol.% CNTs composites show a very close to the thermal conductivity of Cu.However,the addition of 15 vol.% CNTs results in a rather low thermal conductivity of CNT/Cu composites due to the presence a high level of porosity induced by the formation of CNT clusters.The present paper also claims that a further substantial enhancement in thermal conductivity is only possible if the nanotubes are randomly oriented in the plane or if they are all aligned in one direction,for which the processing of CNTs-aligning in metal matrix should be developed.  相似文献   

9.
This experimental study reports on the stability and thermal conductivity enhancement of carbon nanotubes (CNTs) nanofluids with and without gum arabic (GA). The stability of CNT in the presence of GA dispersant in water is systematically investigated by taking into account the combined effect of various parameters, such as sonication time, temperature, dispersant and particle concentration. The concentrations of CNT and GA have been varied from 0.01 to 0.1?wt% and from 0.25 to 5?wt%, respectively, and the sonication time has been varied in between 1 and 24?h. The stability of nanofluid is measured in terms of CNT concentration as a function of sediment time using UV-Vis spectrophotometer. Thermal conductivity of CNT nanofluids is measured using KD-2 prothermal conductivity meter from 25 to 60°C. Optimum GA concentration is obtained for the entire range of CNT concentration and 1–2.5?wt% of GA is found to be sufficient to stabilise all CNT range in water. Rapid sedimentation of CNTs is observed at higher GA concentration and sonication time. CNT in aqueous suspensions show strong tendency to aggregation and networking into clusters. Stability and thermal conductivity enhancement of CNT nanofluids have been presented to provide a heat transport medium capable of achieving high heat conductivity. Increase in CNT concentrations resulted in the non-linear thermal conductivity enhancement. More than 100–250% enhancement in thermal conductivity is observed for the range of CNT concentration and temperature.  相似文献   

10.
In the present study, human hair derived carbon powder (HHC) synthesized in home laboratory is characterized via SEM, AFM, FT-IR, XRD, Raman, XPS, and TGA. Then HHC is used as a low cost reinforcing filler at 0–50?wt% with phenolic resin for fabricating carbon fabric reinforced polymer composites (CPCs) and its carbon-carbon composites (CCs). CPCs are fabricated via simple hand-lay techniques for resin-HHC slurry impregnation followed by hot pressing while CCs are obtained by carbonization of CPCs at 600 and 900?°C. Effects of HHC loading on CPCs and CCs are evaluated through static and dynamic mechanical thermal analysis, density, electrical conductivity, morphology, and microstructure studies. Tensile and flexural properties (strength and modulus) of CPCs and CCs improve significantly (~25 to 73%) at 30?wt% HHC loading. Storage modulus (E′) and loss modulus (E″) of CPCs increase up to 132 and 104%, respectively with addition of HHC up to 40?wt%. E′ and E″ of unfilled CCs increase with carbonization temperature, however they decrease with increasing HHC content. In addition to high specific properties, CCs also exhibit substantial increment (~233%) in electrical conductivity and thermal stability, which make HHC one of the most suitable material for high temperature-structural applications.  相似文献   

11.
Polyacrylate composites with various fillers such as multi-walled carbon nanotube (CNT), aluminum flake (Al-flake), aluminum powders and Al–CNT were prepared by a ball milling. The thermal decomposition temperature increased by as much as 64 °C for polyacrylate/Al-flake 70 wt% composite compared to polyacrylate. The thermal conductivity of polyacrylate/Al–CNT composites increased from 0.50 to 1.67 W/m K as the Al–CNT content increases from 50 to 80 wt%. The thermal conductivity of the composite sheet increases with the sheet thickness. At the given filler concentration (90 wt%), the composite filled with aluminum powder of 13 μm has a higher thermal conductivity than the one filled 3 μm powder, and the composite filled with mixture of two powders showed a synergistic effect on the thermal conductivity. The morphology indicates that the dispersion of CNT in the polyacrylate/Al-flake + CNT composite is not perfect, and agglomeration of CNTs was observed.  相似文献   

12.
采用ANSYS对不同粒径TiB2/Cu复合材料热传导过程进行模拟。采用粉末冶金法制备了不同粒径TiB2增强的Cu复合材料,采用LINSEIS LFA1600激光导热仪测试了室温至280℃下的TiB2/Cu复合材料热传导性能变化,并与模拟结果进行对比。结果表明:热导率模拟结果与实验结果吻合较好。在50~200℃之间,复合材料热导率变化不大,在6%~9%范围内波动。200℃之后,模拟值与实验值均呈现出随温度升高而增大的趋势,且吻合度较高。这是由于温度低于200℃时,在模拟过程中未考虑材料界面处两相不同热膨胀系数的影响,导致模拟值与实验值有较大的差异。当温度高于200℃时,模拟值和实验值吻合程度趋于稳定。在200℃时,由于两相热膨胀系数的影响,复合材料内部界面处等效应力大于Cu基体屈服强度,使其发生塑性变形,从而引起热导率发生较大幅度变化。此外,热导率随着TiB2粒径的增大呈现出先提高后降低的趋势,在10 μm时达到最大。这是由于当颗粒直径小于临界平均直径时,颗粒直径的增大会减少界面数量,从而降低界面热阻。当颗粒直径大于临界平均直径时,平均自由程l的急剧增加导致热导率降低。   相似文献   

13.
For practical application of carbon nanotube (CNT)/polymer composites, it is critical to produce the composites at high speed and large scale. In this study, multi-walled carbon nanotubes (MWNTs) with large diameter (∼45 nm) and polyvinyl alcohol (PVA) were used to increase the processing speed of a recently developed spraying winding technique. The effect of the different winding speed and sprayed solution concentration to the performance of the composite films were investigated. The CNT/PVA composites exhibit tensile strength of up to 1 GPa, and modulus of up to 70 GPa, with a CNT weight fraction of 53%. In addition, an electrical conductivity of 747 S/cm was obtained for the CNT/PVA composites. The good mechanical and electrical properties are attributed to the uniform CNTs and PVA matrix integration and the high degree of tube alignment.  相似文献   

14.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

15.
The ablation properties and thermal conductivity of carbon nanotube (CNT) and carbon fiber (CF)/phenolic composites were evaluated for different filler types and structures. It was found that the mechanical and thermal properties of phenolic-polymer matrix composites were improved significantly by the addition of carbon materials as reinforcement. The concentrations of CF and CNT reinforcing materials used in this study were 30 vol% and 0.5 wt%, respectively. The thermal conductivity and thermal diffusion of the different composites were observed during ablation testing, using an oxygen–kerosene (1:1) flame torch. The thermal conductivity of CF mat/phenolic composites was higher than that of random CF/phenolic composites. Both CF mat and CNT/phenolic composites exhibited much better thermal conductivity and ablation properties than did neat phenolic resin. The more conductive carbon materials significantly enhanced the heat conduction and dissipation from the flame location, thereby minimizing local thermal damage.  相似文献   

16.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

17.
Titanium carbide (TiC) and carbon nanotubes (CNTs) were introduced into zirconium carbide (ZrC) ceramics to improve the fracture toughness. ZrC–TiC and ZrC–TiC–CNT composites containing 0–30 vol.% TiC and 0.25–1 mass% CNT were prepared by spark plasma sintering at temperatures of 1750–1850 °C for 300 s under a pressure of 40 MPa. Densification behavior, microstructure, and mechanical properties of the ZrC-based composites were investigated. Fully dense ZrC–TiC and ZrC–TiC–CNT composites with a relative density of more than 98 % were obtained. Vickers hardness of ZrC-based composites increased with increasing TiC content and the highest hardness was achieved with the addition of 20 vol.% TiC. Addition of CNTs up to 0.5 wt% significantly increased the fracture toughness of ZrC-based composites, whereas the addition of TiC did not have this effect.  相似文献   

18.
Copper matrix composites reinforced with about 90 vol.% of diamond particles, with the addition of zirconium to copper matrix, were prepared by a high temperature–high pressure method. The Zr content was varied from 0 to 2.0 wt.% to investigate the effect on interfacial microstructure and thermal conductivity of the Cu–Zr/diamond composites. The highest thermal conductivity of 677 W m−1 K−1 was achieved for the composite with 1.0 wt.% Zr addition, which is 64% higher than that of the composite without Zr addition. This improvement is attributed to the formation of ZrC at the interface between copper and diamond. The variation of thermal conductivity of the composites was correlated to the evolution of interfacial microstructure with increasing Zr content.  相似文献   

19.
In the present study, the microstructure and properties characteristics of W-20Cu nano-crystallite composites were investigated. Characterization techniques like XRD and SEM have been used to study the crystallite size of W-Cu powder obtained by mechanical alloying. As well as, the effect of milling time on the microstructure and properties of W-20Cu composites was discussed. The results show that with increasing milling time, the crystallite size of W-Cu composite powder decreased and kept steady at last, and the crystallite size of W(Cu) solid solution was 6.6 nm for milling 20 h. The microstructure of W-20Cu composites became homogeneous and tungsten crystallite size became fine. The relative density and bending strength of W-20Cu composites increased. The value of thermal conductivity peaked when milling time was 20 h.  相似文献   

20.
采用液相还原法,制备了BN表面沉积纳米Sn粒子(BN-Sn NPs)杂化材料,用于环氧树脂(EP)的导热绝缘填料。BN-Sn NPs表面纳米Sn的粒径和熔点分别为10~30 nm 和166.5~195.3℃。BN表面沉积纳米Sn后,粉体Zeta电位及压片的导热系数增加,EP滴在压片表面的接触角降低。在BN-Sn NPs/EP复合材料固化过程中,BN-Sn NPs表面纳米Sn熔融烧结,有利于填料相互桥联在一起,降低接触热阻,并改善界面性能,从而提高BN-Sn NPs/EP复合材料的导热系数。当填料体积含量为30vol%时,BN-Sn NPs/EP复合材料的导热系数达1.61 W(m·K)?1,比未改性BN/EP复合材料的导热系数(1.08 W(m·K)?1)提高了近50%。Monte Carlo法模拟表明,BN和BN-Sn NPs在EP基体中的接触热阻(Rc)分别为6.1×106 K·W?1和3.7×106 K·W?1。与未改性BN/EP复合材料相比,BN-Sn NPs/EP复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有良好电绝缘性能。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号