首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cooled and heavy exhaust gas recirculation (EGR) has been used to control NOx emissions from diesel engines, but its application has been limited by low thermal efficiency or high unburned hydrocarbon emissions. In this study, hydrogen was added into the intake manifold of a diesel engine to investigate its effect on NOx emissions and thermal efficiency under low-temperature and heavy-EGR conditions. The energy content of the introduced hydrogen was varied from an equivalent of 2-10% of the total fuel’s lower heating value. A test engine was operated at a constant diesel fuel injection rate and engine speed to maintain the same engine control unit (ECU) parameters, such as injection time, while observing changes in the carbon dioxide produced due to variations in the hydrogen supply. Additionally, the EGR system was modified to control the EGR ratio. The temperature of the intake gas manifold was controlled by both the EGR cooler and the inter-cooling devices to maintain a temperature of 25 °C. Exhaust NOx emissions were measured for different hydrogen flow rates at a constant EGR ratio. The test results demonstrated that the supplied hydrogen reduced the specific NOx emissions at a given EGR ratio while increasing the brake thermal efficiency. This behavior was observed over constant EGR ratios of 2, 16, and 31%. The rate of NOx reduction due to hydrogen addition increased at higher EGR ratios compared with pure diesel combustion at the same EGR ratio. At an EGR ratio of 31%, when the hydrogen equivalent to 10% of the total fuel’s lower heating value was supplied, the specific NOx was lowered by 25%, and there was a slight increase in the brake thermal efficiency. This behavior was investigated by measuring and analyzing changes in the exhaust gas composition, including oxygen, carbon dioxide, and water vapor.  相似文献   

2.
In the present work, dual fuel operation of a diesel engine has been experimentally investigated using biodiesel and hydrogen as the test fuels. Jatropha Curcas biodiesel is used as the pilot fuel, which is directly injected in the combustion chamber using conventional diesel injector. The main fuel (hydrogen) is injected in the intake manifold using a hydrogen injector and electronic control unit. In dual fuel mode, engine operations are studied at varying engine loads at the maximum pilot fuel substitution conditions. The engine performance parameters such as maximum pilot fuel substitution, brake thermal efficiency and brake specific energy consumption are investigated. On emission side, oxides of nitrogen, hydrocarbon, carbon monoxide and smoke emissions are analysed. Based on the results, it is found that biodiesel-hydrogen dual fuel engine could utilize up to 80.7% and 24.5% hydrogen (by energy share) at low and high loads respectively along with improved brake thermal efficiency. Furthermore, hydrocarbon, carbon monoxide and smoke emissions are significantly reduced compared to single fuel diesel engine operation. Exhaust gas recirculation (EGR) has also been studied with biodiesel-hydrogen dual fuel engine operations. It is found that EGR could improve the utilization of hydrogen in dual fuel engine, especially at the high loads. The effect of EGR is also found to reduce high nitrogen oxide emissions from the dual fuel engine and brake thermal efficiency is not significantly affected.  相似文献   

3.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

4.
With an alarming enlargement in vehicular density, there is a threat to the environment due to toxic emissions and depleting fossil fuel reserves across the globe. This has led to the perpetual exploration of clean energy resources to establish sustainable transportation. Researchers are continuously looking for the fuels with clean emission without compromising much on vehicular performance characteristics which has already been set by efficient diesel engines. Hydrogen seems to be a promising alternative fuel for its clean combustion, recyclability and enhanced engine performance. However, problems like high NOx emissions is seen as an exclusive threat to hydrogen fuelled engines. Exhaust gas recirculation (EGR), on the other hand, is known to overcome the aforementioned problem. Therefore, this study is conducted to study the combined effect of hydrogen addition and EGR on the dual fuelled compression ignition engine on a single cylinder diesel engine modified to incorporate manifold hydrogen injection and controlled EGR. The experiments are conducted for 25%, 50%, 75% and 100% loads with the hydrogen energy share (HES) of 0%, 10% and 30%. The EGR rate is controlled between 0%, 5% and 10%. With no substantial decrement in engine's brake thermal efficiency, high gains in terms of emissions are observed due to synergy between hydrogen addition and EGR. The cumulative reduction of 38.4%, 27.4%, 33.4%, 32.3% and 20% with 30% HES and 10% EGR is observed for NOx, CO2, CO, THC and PM, respectively. Hence, the combination of hydrogen addition and EGR is observed to be advantageous for overall emission reduction.  相似文献   

5.
This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NOx emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced.  相似文献   

6.
The aim of this study is to determine the availability of pomegranate seed oil biodiesel (POB) as an alternative fuel in diesel engines and evaluate engine performance and emission characteristics of pure hydrogen enriched POB using diesel engine. For this purpose, the intake manifold of the test engine was modified and hydrogen enriched intake air was supplied throughout the experiments. Physical properties of POB and its blend with diesel fuel were also determined. The results showed that measured physical properties of POB are comparable with diesel fuel. According to engine performance experiments, although POB utilization has slight undesirable effects on some engine performance parameters such as brake power output and specific fuel consumption, it can be used as alternative fuel in diesel engines, by this way CO emission can be improved. Finally, hydrogen enrichment experiments indicated that pure hydrogen addition causes a slight improvement in both engine performance and exhaust emissions.  相似文献   

7.
Compression ignition (CI) engines used in the transportation sector operates on fossil diesel and is one of the biggest causes of air pollution. Numerous studies were carried out over last two decades to substitute the fossil diesel with biofuels so that the net carbon dioxide (CO2) emission can be minimized. However, the engine performance with these fuel was sub-standard and there were many long-term issues. Therefore, many researchers inducted hydrogen along with the biofuels. The present study gives an outlook on the effect of hydrogen addition with biodiesel/vegetable oil from various sources in CI engine. Engine parameters (brake thermal efficiency, brake specific fuel consumption), combustion parameters (in-cylinder pressure and heat release rate) and emission parameters (unburned hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) and smoke emissions) were evaluated in detail. The results show that hydrogen induction in general improves the engine performance as compared to biodiesel/vegetable oil but it is similar/lower than diesel. Except NOx emissions all other emissions showed a decreasing trend with hydrogen addition. To counter this effect numerous after-treatment systems like selective catalytic reduction (SCR), exhaust gas recirculation (EGR), selective non-catalytic reduction system (SNCR) and non-selective catalytic reduction system (NSCR) were proposed by researchers which were also studied in this review.  相似文献   

8.
Hydrogen and HHO enriched biodiesel fuels have not been investigated extensively for compression ignition engine. This study investigated the performance and emissions characteristics of a diesel engine fueled with hydrogen or HHO enriched Castor oil methyl ester (CME)-diesel blends. The production and blending of CME was carried out with a 20% volumetric ratio (CME20) using diesel fuel. In addition, the enrichment of intake air was carried out using pure HHO or hydrogen through the intake manifold with no structural changes – with the exception of the reduction of the amount of diesel fuel – for a naturally aspirated, four cylinder diesel engine with a volume of 3.6 L. Hydrogen amount was kept constant with a ratio of 10 L/min throughout the experiments. Engine performance parameters, including Brake Power, Brake Torque, Brake Specific Fuel Consumption and exhaust emissions – including NOx and CO, – were tested at engine speeds between 1200 and 2600 rpm. It is seen that HHO enriched CME has better results compared to pure hydrogen enrichment to CME. An average improvement of 4.3% with HHO enriched CME20 was found compared to diesel fuel results while pure hydrogen enriched CME20 fuel resulted with an average increase of 2.6%. Also, it was found that the addition of pure hydrogen to CME had a positive effect on exhaust gas emissions compared to that adding HHO. The effects of both enriched fuels on the engine performance were minimal compared to that of diesel fuel. However, the improvements on exhaust gas emissions were significant.  相似文献   

9.
Hydrogen-diesel dual-fuel operation can provide significant benefits to the performance and carbon-based emissions formation of compression-ignition engines. The wide flammability range of hydrogen allows engine operation at extremely low equivalence ratios while its high diffusivity and flame speed promote wide range combustion inside the cylinder. Nonetheless, despite the excellent properties of hydrogen for internal combustion, unburned hydrogen emissions and poor combustion efficiency have been previously observed at low-load conditions of compression ignition engines.The focus of the present study is to assess the effects of different engine operation and diesel injection parameters on the combustion efficiency of a heavy-duty dual-fuel engine while observing their interactions with the brake thermal efficiency (BTE) and emissions formation of the engine. In an attempt to reduce the unburned hydrogen rates at the exhaust of the engine, exhaust gas recirculation (EGR) and different diesel injection strategies were implemented. Statistical methods were applied in this study to reduce the experimental time.The results show a strong connection between unburned hydrogen rates, combustion and brake thermal efficiencies with the EGR rate. Higher EGR rates increase the intake charge temperature and provide improved hydrogen combustion and fuel economy. Operation of the dual-fuel engine at low-load with high EGR rate and slightly advanced main diesel injection can deliver simultaneous benefits to most of the harmful emissions and the BTE of the engine. Despite the efforts to achieve optimal engine operation at low loads, the combustion efficiency for most of the tested cases was in the range of 90%. Thus, increased hydrogen rates should be avoided as the benefits of the dual-fuel operation are weak at low-load conditions.  相似文献   

10.
In this study, the effect of adding hydrogen to natural gas and EGR ratio was conducted on a diesel engine to investigate the engine performance and exhaust gases by AVL Fire multi-domain simulation software.For this investigation, a mixture of hydrogen fuel and natural gas replaced diesel fuel. The percentage of hydrogen in blend fuel changed from 0% to 40%. The compression ratio converted from 17:1 to 15:1. The EGR ratios were in three steps of 5%, 10%, and 15%, with different engine speeds from 1000 to 1800 RPM. The Gaussian process regression (GPR) was developed to model engine performance and exhaust emissions. The optimal values of EGR and the percentage of hydrogen in the blend of HCNG were extracted using a multi-objective genetic algorithm (MOGA).The results showed that by increasing EGR, thermal efficiency, the engine power, and specific fuel consumption decreased due to prolongation of combustion length while cumulative heat release increased but, its effect on cylinder pressure is insignificant. Adding hydrogen to natural gas increased the combustion temperature and, consequently NOx. While the amount of CO and HC decreased. The results of GPR and MOGA illustrated that at different engine speeds, the optimum values of EGR and HCNG were 6.35% and 31%, respectively.  相似文献   

11.
Hydrogen on-board fuel reforming has been identified as a waste energy recovery technology with potential to improve Internal combustion engines (ICE) efficiency. Additionally, can help to reduce CO2, NOx and particulate matter (PM) emissions. As this thermochemical energy is recovered from the hot exhaust stream and used in an efficient way by endothermic catalytic reforming of petrol mixed with a fraction of the engine exhaust gas. The hydrogen-rich reformate has higher enthalpy than the petrol fed to the reformer and is recirculated to the intake manifold, which will be called reformed exhaust gas recirculation (rEGR).The rEGR system has been simulated by supplying hydrogen (H2) and carbon monoxide (CO) into a conventional Exhaust Gas Recirculation (EGR) system. The hydrogen and CO concentrations in the rEGR stream were selected to be achievable in practice at typical gasoline exhaust temperatures (temperatures between 300 and 600 °C). A special attention has been paid on comparing rEGR to the baseline ICE, and to conventional EGR. The results demonstrate the potential of rEGR to simultaneously increase thermal efficiency, reduce gaseous emissions and decrease PM formation.Complete fuel reformation can increase the calorific value of the fuel by 28%. This energy can be provided by the waste heat in the exhaust and so it is ideal for combination with a gasoline engine with its high engine-out exhaust temperatures.The aim of this work is to demonstrate that exhaust gas fuel reforming on an engine is possible and is commercially viable. Also, this paper demonstrates how the combustion of reformate in a direct injection gasoline engine via reformed Exhaust Gas Recirculation (rEGR) can be beneficial to engine performance and emissions.  相似文献   

12.
This paper analyzes the emissions of a single‐cylinder diesel engine fueled with biodiesel, using selective catalytic reduction (SCR) and exhaust gas recirculation (EGR) techniques. The aim of this paper is to compare both EGR and SCR techniques, which were studied under different brake powers. Grape seed biodiesel was used as a test fuel. Experiments were performed by both techniques at different loads and rates to find out the performance change in the engine and the change in the emission rates using both the techniques. Then the observations from both the techniques were compared, concluding that both the techniques show a sufficient reduction in NOx. Using the abovementioned techniques, a reduction in hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and smoke was observed. The EGR technique is more suitable for low‐load engine vehicles, as it affects the efficiency of the engine with an increase in the fuel consumption, whereas the SCR technique is suitable for high‐load engines, which do not affect the efficiency of the engine with a decrease in the fuel consumption.  相似文献   

13.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

14.
In this research, effects of hydrogen addition on a diesel engine were investigated in terms of engine performance and emissions for four cylinders, water cooled diesel engine. Hydrogen was added through the intake port of the diesel engine. Hydrogen effects on the diesel engine were investigated with different amount (0.20, 0.40, 0.60 and 0.80 lpm) at different engine load (20%, 40%, 60%, 80% and 100% load) and the constant speed, 1800 rpm. When hydrogen amount is increased for all engine loads, it is observed an increase in brake specific fuel consumption and brake thermal efficiency due to mixture formation and higher flame speed of hydrogen gas according to the results. For the 0.80 lpm hydrogen addition, exhaust temperature and NOx increased at higher loads. CO, UHC and SOOT emissions significantly decreased for hydrogen gas as additional fuel at all loads. In this study, higher decrease on SOOT emissions (up to 0.80lpm) was obtained. In addition, for 0.80 lpm hydrogen addition, the dramatic increase in NOx emissions was observed.  相似文献   

15.
不同增压方式下EGR对高压共轨柴油机燃烧和排放的影响   总被引:1,自引:0,他引:1  
在一台电控高压共轨柴油机上,采用单级增压、两级增压和可变几何截面增压3种增压方式,进行了高压冷却废气再循环(EGR)的燃烧与排放试验研究.结果表明,柴油机采用可变几何截面增压时,涡前与进气压差较低,泵气损失小,具有良好的燃油经济性;大负荷、等EGR率情况下,单级增压、两级增压和可变几何截面增压的缸内最大爆发压力和主燃烧...  相似文献   

16.
Enhanced NO2 production (without raising total NOx) in a diesel engine combustion chamber can improve the performance of several catalytic aftertreatment systems. Thus this can facilitate a further reduction in key regulated emissions such as nitrogen oxides (NOx) and particulate matter (PM) emissions. The oxidation of NO to NO2 is an important intermediate step involved in all current aftertreatment systems that are designed for NOx and PM catalytic removal. The performance of both NOx control systems and catalysed particulate filters depend highly on the NO2 concentration. In this work we have examined the influence of using hydrogen (H2) and simulated reformate (H2, CO and EGR gases) as a supplement to diesel fuel on NO2 production. In actual engine applications a reformer will be integrated within the engine EGR system. This will not only provide the engine with recirculated exhaust gas (i.e. EGR), but will enrich it with H2 and CO.  相似文献   

17.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

18.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

19.
H.E. Saleh 《Renewable Energy》2009,34(10):2178-2186
Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NOx emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NOx emissions can be attained within a limited EGR rate of 5–15% with very little economy penalty.  相似文献   

20.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号