首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
With the acceleration of the development process of hydrogen fuel cell electric vehicles (HFCEV), it has become very important to maximize the energy stored in the vehicle and to use the vehicle with high efficiency. This paper puts forward how to cooperate with a proton exchange membrane fuel cell (PEMFC) as the primary energy source, a lithium-ion battery (LiB) and a supercapacitor (SCAP) as the energy storage technology. Furthermore, this paper examines the effect of two new control strategies developed for HFCEV in different road models on the vehicle fuel economy and life cycle of the system components. Both control strategies applied to the system can be easily applied to the different HFCEVs with minor changes due to the simplicity of their structure and parameters. The simulation results of the study have indicated that the impact of control strategies created in different road conditions on the power of energy sources, the life cycle of system components, system efficiency and fuel economy parameters of HFCEV.  相似文献   

2.
This paper focuses on energy management in an ultra-energy efficient vehicle powered by a hydrogen fuel cell with rated power of 1 kW. The vehicle is especially developed for the student competition Shell Eco-marathon in the Urban Concept category. In order to minimize the driving energy consumption a simulation model of the vehicle and the electric propulsion is developed. The model is based on vehicle dynamics and real motor efficiency as constant DC/DC, motor controllers and transmission efficiency were considered. Based on that model five propulsion schemes and driving strategies were evaluated. The fuel cell output parameters were experimentally determined. Then, the driving energy demand and hydrogen consumption was estimated for each of the propulsion schemes. Finally, an experimental study on fuel cell output power and hydrogen consumption was conducted for two propulsion schemes in case of hybrid and non-hybrid power source. In the hybrid propulsion scheme, supercapacitors were used as energy storage as they were charged from the fuel cell with constant current of 10 A.  相似文献   

3.
Transportation sector is the important sector and consumed the most fossil fuel in the world. Since COVID-19 started in 2019, this sector had become the world connector because every country relies on logistics. The transportation sector does not only deal with the human transportation but also relates to logistics. Research in every country has searched for alternative transportation to replace internal combustion engines using fossil fuel, one of the most prominent choices is fuel cells. Fuel cells can use hydrogen as fuel. Hydrogen can be fed to the fuel cells to provide electric power to drive vehicles, no greenhouse gas emission and no direct combustion required. The fuel cells have been developed widely as the 21st century energy-conservation devices for mobile, stationary, and especially vehicles. The fuel cell electric vehicles using hydrogen as fuel were also called hydrogen fuel cell vehicles or hydrogen electric vehicles. The fuel cells were misconceived by several people that they were batteries, but the fuel cells could provide electric power continuously if their fuel was provided continuously. The batteries could provide electric power as their only capacities, when all ions are released, no power could be provided. Because the fuel cell vehicles play important roles for our future transportation, the overall review for these vehicles is significantly interesting. This overall review can provide general and technical information, variety of readers; vehicle users, manufacturers, and scientists, can perceive and understand the fuel cell vehicles within this review. The readers can realize how important the fuel cell technologies are and support research around the world to drive the fuel cell vehicles to be the leading vehicles in our sustainable developing world.  相似文献   

4.
In this paper, the efficiency properties of the single fuel cell and the fuel cell stack have been analyzed theoretically, and the efficiency models of the fuel cell stack and fuel cell engine (FCE) are developed. Through experimental studies, we analyze the relationships between (1) the efficiency of the fuel cell stack and its current, (2) the efficiency of the fuel cell stack and its power, (3) the efficiency of the fuel cell stack and the hydrogen consumption ratio, (4) the efficiency of the FCE and the fuel cell stack current, (5) the efficiency of the FCE and its power, and (6) the efficiency of the FCE and the hydrogen consumption ratio. The factors which affect the efficiency of the fuel cell stack and that of the FCE are discussed. Finally, the efficiency models of the fuel cell stack and the FCE discussed in this paper are verified by test data. The results show that the simulation values fit well with the test data, and they can be applied in the fuel cell vehicle simulation studies.  相似文献   

5.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   

6.
Optimization of energy management strategy (EMS) for fuel cell/battery/ultracapacitor hybrid electrical vehicle (FCHEV) is primarily aimed on reducing fuel consumption. However, serious power fluctuation has effect on the durability of fuel cell, which still remains one challenging barrier for FCHEVs. In this paper, we propose an optimized frequency decoupling EMS using fuzzy control method to extend fuel cell lifespan and improve fuel economy for FCHEV. In the proposed EMS, fuel cell, battery and ultracapacitor are employed to supply low, middle and high-frequency components of required power, respectively. For accurately adjusting membership functions of proposed fuzzy controllers, genetic algorithm (GA) is adopted to optimize them considering multiple constraints on fuel cell power fluctuation and hydrogen consumption. The proposed EMS is verified by Advisor-Simulink and experiment bench. Simulation and experimental results confirm that the proposed EMS can effectively reduce hydrogen consumption in three typical drive cycles, limit fuel cell power fluctuation within 300 W/s and thus extend fuel cell lifespan.  相似文献   

7.
The fuel cell plug in hybrid electric vehicle (FCPHEV) is a near-term realizable concept to commercialize hydrogen fuel cell vehicles (FCV). Relative to conventional FCVs, FCPHEVs seek to achieve fuel economy benefits through the displacement of hydrogen energy with grid-sourced electrical energy, and they may have less dependence on a sparse hydrogen fueling infrastructure. Through the simulation of almost 690,000 FCPHEV trips using geographic information system (GIS) data surveyed from a fleet of private vehicles in the Puget Sound area of Washington State, USA, this study derives the electrical and hydrogen energy consumption of various design and control variants of FCPHEVs. Results demonstrate that FCPHEVs can realize hydrogen fuel consumption reductions relative to conventional FCV technologies, and that the fuel consumption reductions increase with increased charge depleting range. In addition, this study quantifies the degree to which FCPHEVs are less dependent on hydrogen fueling infrastructure, as FCPHEVs can refuel with hydrogen at a lower rate than FCVs. Reductions in hydrogen refueling infrastructure dependence vary with control strategies and vehicle charge depleting range, but reductions in fleet-level refueling events of 93% can be realized for FCPHEVs with 40 miles (60 km) of charge depleting range. These fueling events occur on or near the network of highways at approximately 4% of the rate (refuelings per year) of that for conventional FCVs. These results demonstrate that FCPHEVs are a type of FCV that can enable an effective and concentrated hydrogen refueling network.  相似文献   

8.
This research paper mainly deals with the realistic simulation of hydrogen fuel cell vehicles and the development of a lifecycle assessment (LCA) tool to calculate and compare the environmental impacts of hydrogen fuel cell passenger vehicles with conventional vehicles. Since fuel cell vehicles are equipped with regenerative braking, they have strong potential to recover an ample portion of the energy being wasted in the braking system. Thus, the driving cycle can significantly affect the performance of fuel cell vehicles. In order to investigate the effect of driving patterns, several driving patterns are considered, and both vehicle fuel economy and lifecycle emissions are calculated and compared. Fuel cell degradation, on the other hand, is another major problem fuel cell vehicles face. This is mainly caused by the starts/stops, acceleration/deceleration, membrane humidity variation and a high load of the engine. When the vehicle operates on various driving patterns, the fuel cell will degrade which eventually affects the fuel economy. The effect of fuel cell degradation is also investigated for these driving patterns, and the results are compared. The results showed that the highway driving cycle has the lowest total lifecycle emission compared to New York city driving cycle, the city of Surrey (CoS) driving cycle, and the UDDS driving cycles. The results also indicate that fuel cell degradation undesirably affected the average fuel economy of the vehicle for about 23%.  相似文献   

9.
Fuel cell hybrid electric vehicles (FCHEVs) are considered to be the most attractive long-term option for passenger cars. Several barriers, such as cost, durability and hydrogen refueling infrastructure, must be overcome for a wider use of FCHEVs. In this paper, a mid-sized FCHEV is modeled and simulated in ADVISOR to analyze the influence of hybridization factor on vehicle performance and costs. The results are compared with those of the Toyota Mirai in order to find the optimum size of the fuel cell stack and the number of battery modules that meet various driving requirements, minimize hydrogen consumption and vehicle cost. The best results are obtained by reducing the fuel cell stack power by 58%. A 7.7% increase in equivalent fuel economy (71.6 MPGe) and a reduction of 25% in the vehicle cost is achieved.  相似文献   

10.
Proton exchange membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed which includes the transient dynamics of the air system with varying back pressure. Compared to the conventional fixed back pressure operation, the optimal operation discussed in this paper can achieve higher system efficiency over the full load range. Finally, the model is applied as part of a dynamic forward-looking vehicle model of a load-following direct hydrogen fuel cell vehicle to explore the energy economy optimization potential of fuel cell vehicles.  相似文献   

11.
The hybrid powerplant combining a fuel cell and a battery has become one of the most promising alternative power systems for electric unmanned aerial vehicles (UAVs). To enhance the fuel efficiency and battery service life, highly effective and robust online energy management strategies are needed in real applications.In this work, an energy management system is designed to control the hybrid fuel cell and battery power system for electric UAVs. To reduce the weight, only one programmable direct-current to direct-current (dcdc) converter is used as the critical power split component to implement the power management strategy. The output voltage and current of the dcdc is controlled by an independent energy management controller. An executable process of online fuzzy energy management strategy is proposed and established. According to the demand power and battery state of charge, the online fuzzy energy management strategy produces the current command for the dcdc to directly control the output current of the fuel cell and to indirectly control the charge/discharge current of the battery based on the power balance principle.Another two online strategies, the passive control strategy and the state machine strategy, are also employed to compare with the proposed online fuzzy strategy in terms of the battery management and fuel efficiency. To evaluate and compare the feasibility of the online energy management strategies in application, experiments with three types of missions are carried out using the hybrid power system test-bench, which consists of a commercial fuel cell EOS600, a Lipo battery, a programmable dcdc converter, an energy management controller, and an electric load. The experimental investigation shows that the proposed online fuzzy strategy prefers to use the most power from the battery and consumes the least amount of hydrogen fuel compared with the other two online energy management strategies.  相似文献   

12.
Fuel cell supplied auxiliary power units could ease the development of fuel cell systems in transportation application if they are fed by conventional hydrocarbons like diesel. Then a fuel processor has to be used to convert the hydrocarbon in a hydrogen rich gas mixture with a low rate of contaminant. The temperatures of the fuel processor modules and the mass flows have to be controlled. The energetic macroscopic representation (EMR) is a causal, graphic modeling tool for complex multi-domain systems that can be used for the design of the control structure through the inversion of model. In this work EMR is used to model a diesel supplied low temperature fuel cell unit including the fuel processor, the fuel cell stack (HTPEM) as well as the supply system of the mass flows. The presented fuel processor and HTPEM models are validated against experimental results. The structure of the temperature and mass flow controls in the fuel processor and supply system are derived. Both the model and the control are implemented in Matlab/Simulink™ and validated.  相似文献   

13.
The size of the individual powerplant components on board a fuel cell/battery hybrid vehicle affects the power management strategy which determines both the fuel economy and the durability of the fuel cell and the battery, and thus the average lifetime cost of the vehicle. Cost is one of the major barriers to the commercialization of fuel cell vehicles, therefore it is important to study how the sizing configuration affects overall vehicle cost. In this paper, degradation models for the fuel cell and the battery on board a fuel cell/battery hybrid bus are incorporated into the power management system to extend their lifetimes. Different sizing configurations were studied and the results reveal that the optimal size with highest lifetime and lowest average cost is highly dependent on the drive cycle. The vehicle equipped with a small fuel cell stack serving as a range extender will fail earlier and consume more fuel under drive cycles with high average power demand resulting in higher overall cost. However, the same configuration gives optimal results under a standard bus cycle with lower average power demand. At the other end of the spectrum, a fuel cell-dominant bus does not guarantee longer lifetime since the fuel cell operates mostly under low-load conditions which correspond to higher potentials reducing lifetime. Such a configuration also incurs a higher initial capital cost of the fuel cell stack resulting in a high average cost. The best configuration is a battery-dominated system with moderately-sized fuel cell stack which achieves the longest lifetime combined with the lowest average running cost throughout the lifetime of the vehicle.  相似文献   

14.
A prediction-based power management strategy is proposed for fuel cell/battery plug-in hybrid vehicles with the goal of improving overall system operating efficiency. The main feature of the proposed strategy is that, if the total amount of energy required to complete a particular drive cycle can be reliably predicted, then the energy stored in the onboard electrical storage system can be depleted in an optimal manner that permits the fuel cell to operate in its most efficient regime. The strategy has been implemented in a vehicle power-train simulator called LFM which was developed in MATLAB/SIMULINK software and its effectiveness was evaluated by comparing it with a conventional control strategy. The proposed strategy is shown to provide significant improvement in average fuel cell system efficiency while reducing hydrogen consumption. It has been demonstrated with the LFM simulation that the prediction-based power management strategy can maintain a stable power request to the fuel cell thereby improving fuel cell durability, and that the battery is depleted to the desired state-of-charge at the end of the drive cycle. A sensitivity analysis has also been conducted to study the effects of inaccurate predictions of the remaining portion of the drive cycle on hydrogen consumption and the final battery state-of-charge. Finally, the advantages of the proposed control strategy over the conventional strategy have been validated through implementation in the University of Delaware's fuel cell hybrid bus with operational data acquired from onboard sensors.  相似文献   

15.
Several types of power management strategies have been developed to improve the fuel economy of fuel cell hybrid vehicles (FCHVs). Optimal control based on the Minimum Principle provides the necessary optimality conditions which minimize fuel consumption and optimize the power distribution between power sources while the vehicle is being driven. In the optimal control scheme, the costate is an equivalent parameter between fuel usage and electric usage. The optimal trajectory of the costate can be derived from one of the necessary conditions. In this paper, an optimal control scheme based on the Minimum Principle is proposed for cases without a state constraint and for those with a state constraint. The conditions in which a variable costate can be replaced with a constant costate are presented. The simulation results with constant costates are compared to those with variable costates in order to prove that variable costates can be replaced with constant costates when using the proposed optimal control scheme.  相似文献   

16.
Traditional power management systems for hybrid vehicles often focus on the optimization of one particular cost factor, such as fuel consumption, under specific driving scenarios. The cost factor is usually based on the beginning-of-life performance of system components. Typically, such strategies do not account for the degradation of the different components of the system over their lifetimes. This study incorporates the effect of fuel cell and battery degradation within their cost factors and investigates the impact of different power management strategies on fuel cell/battery loads and thus on the operating cost over the vehicle's lifetime. A simple rule-based power management system was compared with a model predictive controller (MPC) based system under a connected vehicle scenario (where the future vehicle speed is known a priori within a short time horizon). The combined cost factor consists of hydrogen consumption and the degradation of both the fuel cell stack and the battery. The results show that the rule-based power management system actually performs better and achieves lower lifetime cost compared to the MPC system even though the latter contains more information about the drive cycle. This result is explained by examining the changing dynamics of the three cost factors over the vehicle's lifetime. These findings reveal that a limited knowledge of traffic information might not be as useful for the power management of certain fuel cell/battery hybrid vehicles when degradation is taken into consideration, and a simple tuned rule-based controller is adequate to minimize the lifetime cost.  相似文献   

17.
Cross utilization of photovoltaic/wind/battery/fuel cell hybrid-power-system has been demonstrated to power an off-grid mobile living space. This concept shows that different renewable energy sources can be used simultaneously to power off-grid applications together with battery and hydrogen energy storage options. Photovoltaic (PV) and wind energy are used as primary sources and a fuel cell is used as backup power. A total of 2.7 kW energy production (wind and PV panels) along with 1.2 kW fuel cell power is supported with 17.2 kWh battery and 15 kWh hydrogen storage capacities. Supply/demand scenarios are prepared based on wind and solar data for Istanbul. Primary energy sources supply load and charge batteries. When there is energy excess, it is used to electrolyse water for hydrogen production, which in turn can either be used to power fuel cells or burnt as fuel by the hydrogen cooker. Power-to-gas and gas-to-power schemes are effectively utilized and shown in this study. Power demand by the installed equipment is supplied by batteries if no renewable energy is available. If there is high demand beyond battery capacity, fuel cell supplies energy in parallel. Automatic and manual controllable hydraulic systems are designed and installed to increase the photovoltaic efficiency by vertical axis control, to lift up & down wind turbine and to prevent vibrations on vehicle. Automatic control, data acquisition, monitoring, telemetry hardware and software are established. In order to increase public awareness of renewable energy sources and its applications, system has been demonstrated in various exhibitions, conferences, energy forums, universities, governmental and nongovernmental organizations in Turkey, Austria, United Arab Emirates and Romania.  相似文献   

18.
Fuel cells have great application potential as stationary power plants, as power sources in transportation, and as portable power generators for electronic devices. Most fuel cells currently being developed for use in vehicles and as portable power generators require hydrogen as a fuel. Chemical storage of hydrogen in liquid fuels is considered to be one of the most advantageous options for supplying hydrogen to the cell. In this case a fuel processor is needed to convert the liquid fuel into a hydrogen-rich stream. This paper presents a second-law analysis of an integrated fuel processor and fuel cell system. The following primary fuels are considered: methanol, ethanol, octane, ammonia, and methane. The maximum amount of electrical work and corresponding heat effects produced from these fuels are evaluated. An exergy analysis is performed for a methanol processor integrated with a proton exchange membrane fuel cell, for use as a portable power generator. The integrated FP–FC system, which can produce 100 W of electricity, is simulated with a computer model using the flow-sheeting program Aspen Plus. The influence of various operating conditions on the system efficiency is investigated, such as the methanol concentration in the feed, the temperature in the reformer and in the fuel cell, as well as the fuel cell efficiency. Finally, it is shown that the calculated overall exergetic efficiency of the FP–FC system is higher than that of typical combustion engines and rechargeable batteries.  相似文献   

19.
In order to analyze the driving stability of a plug-in fuel cell vehicle (PFCV), a computer-aided simulator for PFCVs has been developed. PFCVs have been introduced around the world to achieve early commercialization of an eco-friendly and highly efficient fuel cell vehicle. The plug-in option, which allows the battery to be recharged from the electricity grid, enables a reduction in size of the fuel cell system (FCS) and an improvement of its durability. As such, the existing limitations of the fuel cell - such as its high cost, poor durability, and the insufficient hydrogen infrastructure – can be overcome. During the design phase of PFCV development, simulation-based driving stability test is necessary to determine the sizes of the electric engine of the FCS and the battery. The developed simulator is very useful for analyzing the driving stability of the PFCV with respect to the capacities of the FCS and battery. The simulation results are in fact very close to those obtained from a real system, since the estimation accuracy of PFCV component models used in this simulator, such as the fuel cell stack, battery, electric vehicle, and the other balance of plants (BOPs), are verified by the experiments, and the simulator uses the newly-proposed power distribution control logic and the pre-confirmed real driving schedule. Using these results, we can study which one will be the best in terms of driving stability.  相似文献   

20.
The present study considers the optimal sizing of a three-way hybrid powertrain consisting of a compact reformer, a compact battery and a low temperature PEM fuel cell stack serving as the main power unit. A simulation model consisting of the relevant characteristic parameters of the three power sources has been developed and has been used to study the fuel utilization features of the hybrid powertrain while going through the NEDC driving cycle with a given auxiliary power requirement. The optimality is based on minimizing fuel cost while having an assured range of 500 km under practical driving conditions and a further 100 km under reduced auxiliary power usage. It is shown that for performance characteristics of Toyota Mirai and for average auxiliary power consumption of 5 kW, a smaller NiMH battery size of 1.3 kWh together with a fuel processor of 5.6 kW constant output would be optimal with a further requirement of 25% more hydrogen and 33 kg of ethanol to be carried on-board. Substantial reductions in vehicle mass and fuel load can be achieved for more modest performance characteristics and auxiliary power consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号