首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a notion of a real-world knowledge medium by presenting our ongoing project to build a guidance system for exhibition tours. In order to realize a knowledge medium usable in the real world, we focus on the context-awareness of users and their environments. Our system is a personal mobile assistant that provides visitors touring exhibitions with information based on their spatial/temporal locations and individual interests. We also describe an application of knowledge sharing used in the actual exhibition spaces. Yasuyuki Sumi, Ph.D.: He has been a researcher at ATR Media Integration & Communications Research Laboratories since 1995. His research interests include knowledge-based systems, creativity supporting systems, and their applications for facilitating human collaboration. He received his B. Eng. degree from Waseda University in 1990, and M. Eng. and D. Eng. degrees in information engineering from the University of Tokyo in 1992 and 1995, respectively. He is a member of Institutes of Electronics, Information and Communication Engineers (IEICE) of Japan, the Information Processing Society of Japan (IPSJ), the Japanese Society for Artificial Intelligence (JSAI), and American Association for Artificial Intelligence (AAAI). Kenji Mase, Ph.D.: He received the B.S. degree in Electrical Engineering and the M.S. and Ph.D. degrees in Information Engineering from Nagoya University in 1979, 1981 and 1992 respectively. He has been with ATR (Advanced Telecommunications Research Institute) Media Integration & Communications Research Laboratories since 1995 and is currently the head of Department 2. He joined the Nippon Telegraph and Telephone Corporation (NTT) in 1981 and had been with the NTT Human Interface Laboratories. He was a visiting researcher at the Media Laboratory, MIT in 1988–1989. His research interests include image sequence processing of human actions, computer graphics, computer vision, artificial intelligence and their applications for computer-aided communications and human-machine interfaces. He is a member of the Information Processing Society of Japan (IPSJ), Institutes of Electronics, Information and Communication Engineers (IEICE) of Japan and IEEE Computer Society.  相似文献   

2.
In this paper, we propose as a new challenge a public opinion channel which can provide a novel communication medium for sharing and exchanging opinions in a community. Rather than simply developing a means of investigating public opinion, we aim at an active medium that can facilitate mutual understanding, discussion, and public opinion formation. First, we elaborate the idea of public opinion channels and identify key issues. Second, we describe our first step towards the goal using the talking virtualized egos metaphor. Finally, we discuss a research agenda towards the goal. Toyoaki Nishida, Dr.Eng.: He is a professor of Department of Information and Communication Engineering, School of Engineering, The University of Tokyo. He received the B.E., the M.E., and the Doctor of Engineering degrees from Kyoto University in 1977, 1979, and 1984 respectively. His research centers on artificial intelligence in general. His current research focuses on community computing and support systems, including knowledge sharing, knowledge media, and agent technology. He has been leading the Breakthrough 21 Nishida Project, sponsored by Ministry of Posts and Telecommunications, Japan, aiming at understanding and assisting networked communities. Since 1997, he is a trustee for JSAI (Japanese Society for Artificial Intelligence), and serves as the program chair of 1999 JSAI Annual Convention. He is an area editor (intelligent systems) of New Generation Computing and an editor of Autonomous Agents and Multiagent Systems. Nobuhiko Fujihara, Ph.D.: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E., the M.E., and the Ph.D. in Human Sciences degrees from Osaka University in 1992, 1994, and 1998 respectively. He has a cognitive psychological background. His current research focuses on: (1) cognitive psychological analysis of human behavior in a networked community, (2) investigation of information comprehension process, (3) assessment and proposition of communication tools in networking society. Shintaro Azechi: He is a fellow of Breakthrough 21 Nishida project, Communications Research Laboratory sponsored by Ministry of Posts and Telecommunications, Japan. He received the B.E. and the M.E. of Human Sciences degrees from Osaka University in 1994 and 1996 respectively. He is a Doctoral Candidate of Graduate School of Human Sciences, Osaka University. His current researches focus on (1) human behavior in networking community (2) social infomation process in human mind (3) development of acessment technique for communication tools in networkingsociety. His approach is from social psychological view. Kaoru Sumi, Dr.Eng.: She is a Researcher of Breakthrough 21 Nishida Project. She received her Bachelor of Science at School of Physics, Science University of Tokyo. She received her Master of Systems Management at Graduate School of Systems Management, The university of Tsukuba. She received her Doctor of engineering at Graduate School of Engineering, The University of Tokyo. Her research interests include knowledge-based systems, creativity supporting systems, and their applications for facilitating human collaboration. She is a member of the Information Processing Society of Japan (IPSJ), the Japanese Society for Artificial Intelligence (JSAI). Hiroyuki Yano, Dr.Eng.: He is a senior research official of Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts and Telecommunications. He received the B.E., the M.E., and the Doctor of Engineering degrees from Tohoku University in 1986, 1988, and 1993 respectively. His interests of research include cognitive mechanism of human communications. His current research focuses on discourse structure, human interface, and dialogue systems for human natural dialogues. He is a member of the Japanese Society for Artificial Intelligence, the Association for Natural Language Processing, and the Japanese Cognitive Science Society. Takashi Hirata: He is a doctor course student in Graduate School of Information Scienc at Nara Institute of Science and Technology (NAIST). He received a master of engineering from NAIST in 1998. His research interest is knowledge media and knowledge sharing. He is a member of Information Processing Society of Japan (IPSJ), Japan Association for Artificial Intelligence (JSAI) and The Institute of Systems, Control and Information Engineers (ISCIE).  相似文献   

3.
Electronic Commerce (EC) is a promising field for applying agent and Artificial Intelligence technologies. In this article, we give an overview of the trends of Internet auctions and agent-mediated Web commerce. We describe the theoretical backgrounds of auction protocols and introduce several Internet auction sites. Furthermore, we describe various activities aimed toward utilizing agent technologies in EC and the trends in standardization efforts on agent technologies. Makoto Yokoo, Ph.D.: He received the B.E. and M.E. degrees in electrical engineering, in 1984 and 1986, respectively, from the University of Tokyo, Japan, and the Ph.D. degree in information and communication engineering in 1995 from the University of Tokyo, Japan. He is currently a distinguished technical member in NTT Communication Science Laboratories, Kyoto, Japan. He was a visiting research scientist at the Department of Electrical Engineering and Computer Science, the University of Michigan, Ann Arbor, from 1990 to 1991. His current research interests include multi-agent systems, search, and constraint satisfaction. Satoru Fujita, D.Eng.: He received his B.E. and M.E. degrees in electronic engineering from the University of Tokyo in 1984 and 1986, respectively. He also received his D.Eng. from the University of Tokyo in 1989 for his research on context comprehension in natural language understanding. He joined NEC Corporation in 1989, and is now a principal researcher of Internet Systems Research Laboratories of NEC. He is engaged in research on mobile agents, distributed systems and Web services.  相似文献   

4.
A Web information visualization method based on the document set-wise processing is proposed to find the topic stream from a sequence of document sets. Although the hugeness as well as its dynamic nature of the Web is burden for the users, it will also bring them a chance for business and research if they can notice the trends or movement of the real world from the Web. A sequence of document sets found on the Web, such as online news article sets is focused on in this paper. The proposed method employs the immune network model, in which the property of memory cell is used to find the topical relation among document sets. After several types of memory cell models are proposed and evaluated, the experimental results show that the proposed method with memory cell can find more topic streams than that without memory cell. Yasufumi Takama, D.Eng.: He received his B.S., M.S. and Dr.Eng. degrees from the University of Tokyo in 1994, 1996, and 1999, respectively. From 1999 to 2002 he was with Tokyo Institute of Technology, Japan. Since 2002, he has been Associate Professor of Department of Electronic Systems and Engineering, Tokyo Metropolitan Institute of Technology, Tokyo, Japan. He has also been participating in JST (Japan Science and Technology Corporation) since October 2000. His current research interests include artificial intelligence, Web information retrieval and visualization systems, and artificial immune systems. He is a member of JSAI (Japanese Society of Artificial Intelligence), IPS J (Information Processing Society of Japan), and SOFT (Japan Society for Fuzzy Theory and Systems). Kaoru Hirota, D.Eng.: He received his B.E., M.E. and Dr.Eng. degrees in electronics from Tokyo Institute of Technology, Tokyo, Japan, in 1974, 1976, and 1979, respectively. From 1979 to 1982 and from 1982 to 1995 he was with the Sagami Institute of Technology and Hosei University, respectively. Since 1995, he has been with the Interdisciplinary Graduate School of Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. He is now a department head professor of Department of Computational Intelligence and Systems Science. Dr.Hirota is a member of IFSA (International Fuzzy Systems Association (Vice President 1991–1993), Treasurer 1997–2001), IEEE (Associate Editors of IEEE Transactions on Fuzzy Systems (1993–1995) and IEEE Transactions on Industrial Electronics (1996–2000)) and SOFT (Japan Society for Fuzzy Theory and Systems (Vice President 1995–1997, President 2001–2003)), and he is an editor in chief of Int. J. of Advanced Computational Intelligence.  相似文献   

5.
This paper proposes an automatic indexing method named PAI (Priming Activation Indexing) that extracts keywords expressing the author’s main point from a document based on the priming effect. The basic idea is that since the author writes a document emphasizing his/her main point, impressive terms born in the mind of the reader could represent the asserted keywords. Our approach employs a spreading activation model without using corpus, thesaurus, syntactic analysis, dependency relations between terms or any other knowledge except for stop-word list. Experimental evaluations are reported by applying PAI to journal/conference papers. Naohiro Matsumura: He received his B.S. and M.S. in Engineering Science from Osaka University in 1998 and 2000. Currently, he is a Ph.D. candidate in Engineering at the University of Tokyo and a research staff of PRESTO of Japan Science and Technology Corporation (2000–). His research interests include chance discovery, computer-mediated communication, and user-oriented data mining/text mining. Yukio Ohsawa, Ph.D.: BS, U. Tokyo, 1990, MS, 1992, DS, 1995. Research associate Osaka U. (1995). Associate prof. Univ. of Tsukuba (1999–) and also researcher of Japan Science and Technology Corp (2000–). He has been working for the program com. of the Workshop on Multiagent and Cooperative Computation, Annual Conf. Japanese Soc. Artificial Intelligence, International Conf. MultiAgent Systems, Discovery Science, Pacific Asia Knowledge Discovery and Data Mining, International Conference on Web Intelligence, etc. He chaired the First International Workshop of Japanese Soc. on Artificial Intelligence, Chance Discovery International Workshop Series and the Fall Symposium on Chance Discovery from AAAI. Guest editor of Special Issues on Chance Discovery for the Journal of Contingencies and Crisis Management, Journal of Japan Society for Fuzzy Theory and intelligent informatics, regular member of editorial board for Japanese Society of Artificial Intelligence. Currently he is authoring book “Chance Discovery” from Springer Verlag, “Knowledge Managament” from Ohmsha etc. Mitsuru Ishizuka, Ph.D.: He is a professor at the Dept. of Infomation and Communication Eng., School of Information Science and Thechnology, the Univ. of Tokyo. Prior to this position, he worked at NTT Yokosuka Lab. and the Institute of Industrial Science, the Univ. of Tokyo. He earned his B.S., M.S. and Ph.D. in electronic engineering from the Univ. of Tokyo. His research interests include artificial intelligence, WWW intelligence, and multimodal lifelike agents. He is a member of IEEE, AAAI, IEICE Japan, IPS Japan, and Japanese Society for AI.  相似文献   

6.
A separation method for DNA computing based on concentration control is presented. The concentration control method was earlier developed and has enabled us to use DNA concentrations as input data and as filters to extract target DNA. We have also applied the method to the shortest path problems, and have shown the potential of concentration control to solve large-scale combinatorial optimization problems. However, it is still quite difficult to separate different DNA with the same length and to quantify individual DNA concentrations. To overcome these difficulties, we use DGGE and CDGE in this paper. We demonstrate that the proposed method enables us to separate different DNA with the same length efficiently, and we actually solve an instance of the shortest path problems. Masahito Yamamoto, Ph.D.: He is associate professor of information engineering at Hokkaido University. He received Ph.D. from the Graduate School of Engineering, Hokkaido University in 1996. His current research interests include DNA computing based the laboratory experiments. He is a member of Operations Research Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan etc. Atsushi Kameda, Ph.D.: He is the research staff of Japan Science and Technology Corporation, and has participated in research of DNA computing in Hokkaido University. He received his Ph.D. from Hokkaido University in 2001. For each degree he majored in molecular biology. His research theme is about the role of polyphosphate in the living body. As one of the researches relevant to it, he constructed the ATP regeneration system using two enzyme which makes polyphosphate the phosphagen. Nobuo Matsuura: He is a master course student of Division of Systems and Information Engineering of Hokkaido University. His research interests relate to DNA computing with concentration control for shortest path problems, as a means of solution of optimization problems with bimolecular. Toshikazu Shiba, Ph.D.: He is associate, professor of biochemical engineering at Hokkaido University. He received his Ph.D. from Osaka University in 1991. He majored in molecular genetics and biochemistry. His research has progressed from bacterial molecular biology (regulation of gene expression of bacterial cells) to tissue engineering (bone regeneration). Recently, he is very interested in molecular computation and trying to apply his biochemical idea to information technology. Yumi Kawazoe: She is a master course student of Division of Molecular Chemistry of Hokkaido University. Although her major is molecular biology, she is very interested in molecular computation and bioinformatics. Azuma Ohuchi, Ph.D.: He is professor of Information Engineering at the University of Hokkaido, Sapporo, Japan. He has been developing a new field of complex systems engineering, i.e., Harmonious Systems Engineering since 1995. He has published numerous papers on systems engineering, operations research, and computer science. In addition, he is currently supervising projects on DNA computing, multi-agents based artificial market systems, medical informatics, and autonomous flying objects. He was awarded “The 30th Anniversary Award for Excellent Papers” by the Information Processing Society of Japan. He is a member of Operations Research Society of Japan, Japanese Society for Artificial Intelligence, Information Processing Society of Japan, Japan Association for Medical Informatics, IEEE Computer Society, IEEE System, Man and Cybernetics Society etc. He received PhD from Hokkaido University in 1976.  相似文献   

7.
A case is presented for the double helical processing of chance discovery — human and an automated data mining system co-work, each progressing spirally toward the creative reconstruction of ideas. Especially, the discovery of what we call chances, significant novel events, is realized in this process. The example shown here is an application to questionnaire analysis for understanding new behaviors of Internet users. Internet users are born and bred with face-to-face human relations in the real world, but their interactions with WWW are distilling new value-criteria, keeping personal real-world senses of rationality, empathy, ethics, etc. In our method for aiding the discovery based on the double-helix model, the in-depth interaction of the Internet, the fundamental (i.e., common both in the Internet and in the real world) characters and the behaviors of people are discussed with revealing unnoticed value-criteria. Yukio Ohsawa, Ph.D.: BS, U. Tokyo, 1990, MS, 1992, DS, 1995. Research associate Osaka U. (1995). Associate prof. Univ. of Tsukuba (1999-) and also researcher of Japan Science and Technology Corp (2000-). He has been working for the program com. of the Workshop on Multiagent and Cooperative Computation, Annual Conf. Japanese Soc. Artificial Intelligence, International Conf. MultiAgent Systems, Discovery Science, Pacific Asia Knowledge Discovery and Data Mining, International Conference on Web Intelligence, etc. He chaired the First International Workshop of Japanese Soc. on Artificial Intelligence, Chance Discovery International Workshop Series and the Fall Symposium on Chance Discovery from AAAI. Guest editor of Special Issues on Chance Discovery for the Journal of Contingencies and Crisis Management, Journal of Japan Society for Fuzzy Theory and intelligent informatics, regular member of editorial board for Japanese Society of Artificial Intelligence. Currently he is authoring book “Chance Discovery” from Springer Verlag, “Knowledge Managament” from Ohmsha etc. Yumiko Nara, Ph.D.: She graduated from Nara Women’s University in 1987 and obtained her Master and Ph.D. degrees from Nara Women’s University respectively in 1993 and 1996. From 1987 through 1990 she worked for Sumitomo Bank. She is at Osaka Kyoiku University as lecturer (1997–2001) and as associate professor (2002-). She serves as a member of The Japan Sociological Society, The Japan Association for Social and Economic Systems Studies, The Japan Society of Home Economics, and The Japan Risk Management Society. She is an editorial committee member of the journal of Social and Economic Systems Studies (2001-), and a council member of The Japan Risk Management Society (1997-). In 1997, she received research awards from The Japan Society of Home Economics and The Japan Risk Management Society for studies on risk management.  相似文献   

8.
Practical aspects of ontological engineering are discussed in this part. First topic is the methodology of ontology development. Next, ontology representation languages and support tools are discussed as well as ontology alignment and merging which are becoming practically important to cope with distributed development of ontologies. We next discuss several ontologies developed thus far including large-scale knowledge bases such as Cyc, practical domain ontologies such as Enterprise ontology and gene ontology and generic ontologies such as PSL: Process Specification Language and SUO: Standard Upper Ontology. The first topic of ontology applications is the semantic web in which semantic interoperability, metadata and web service ontology are described. e-Learning is also a good application area of ontology in which LOM: Learning Object Metadata and ontology-aware authoring systems are discussed followed by conclusion. Riichiro Mizoguchi, Ph.D.: He is Professor of the Department of Knowledge Systems, the Institute of Scientific and Industrial Research, Osaka University. He received his B.S., M.S., and Ph.D. degrees from Osaka University in 1972, 1974 and 1977 respectively. From 1978 to 1986 he was research associate in the Institute of Scientific and Industrial Research, Osaka University. From 1986 to 1989 he was Associate Professor there. His research interests include Non-parametric data analyses, Knowledge-based systems, Ontological engineering and Intelligent learning support systems. He is a member of the Japanese Society for Artificial Intelligence, the Institute of Electronics, Information and Communica-tion Engineers, the Information Processing Society of Japan, the Japanese Society for Information and Systems in Education, Intl. AI in Education (IAIED) Soc., AAAI, IEEE and APC of AACE. Currently, he is President of IAIED Soc. and APC of AACE. He received honorable mention for the Pattern Recognition Society Award, the Institute of Electronics, Information and Communication Engineers Award, 10th Anniversary Paper Award from the Japanese Society for Artificial Intelligence and Best paper Award of ICCE99 in 1985, 1988, 1996 and 1999, respectively. He can be reached at miz@ei.sanken.osaka-u.ac.jp  相似文献   

9.
In this paper, we discuss quantum algorithms that, for a given plaintextm o and a given ciphertextc o, will find a secret key,k o, satisfyingc o=E(k o,m o), where an encryption algorithm,E, is publicly available. We propose a new algorithm suitable for an NMR (Nuclear Magnetic Resonance) computer based on the technique used to solve the counting problem. The complexity of, our algorithm decreases as the measurement accuracy of the NMR computer increases. We discuss the possibility that the proposed algorithm is superior to Grover’s algorithm based on initial experimental results. Kazuo Ohta, Dr.S.: He is Professor of Faculty of Electro-Communications at the University of Electro-Communications, Japan. He received B.S., M.S., and Dr. S. degrees from Waseda University, Japan, in 1977, 1979, and 1990, respectively. He was researcher of NTT (Nippon Telegraph and Telephone Corporation) from 1979 to 2001, and was visiting scientist of Laboratory for Computer Science e of MIT (Massachusetts Institute of Technology) in 1991–1992 and visiting Professor of Applied Mathematics of MIT in 2000. He is presently engaged in research on Information Security, and theoretical computer science. Dr. Ohta is a member of IEEE, the International Association for Cryptologic Research, the Institute of Electronics, Information and Communication Engineers and the Information Processing Society of Japan. Tetsuro Nishino,: He received the B.S., M.S. and, D.Sc. degrees in mathematics from Waseda University, in 1982, 1984, and 1991 respectively. From 1984 to 1987, he joined Tokyo Research Laboratory, IBM Japan. From 1987 to 1992, he was a Research Associate of Tokyo Denki University, and from 1992 to 1994, he was an Associate Professor of Japan Advanced Institute of Science and Technology, Hokuriku. He is presently an Associate Professor in the Department of Communications and Systems Engineering, the University of Electro-Communications. His main interests are circuit complexity theory, computational learning theory and quantum complexity theory. Seiya Okubo,: He received the B.Eng. and M.Eng. degrees from the University of Electro-Communications in 2000 and 2002, respectively. He is a student in Graduate School of Electro-Communications, the University of Electro-Communications. His research interests include quantum complexity theory and cryptography. Noboru Kunihiro, Ph.D.: He is Assistant Professor of the University of Electro-Communications. He received his B. E., M. E. and Ph. D. in mathematical engineering and information physics from the University of Tokyo in 1994, 1996 and 2001, respectively. He had been engaged in the research on cryptography and information security at NTT Communication Science Laboratories from 1996 to 2002. Since 2002, he has been working for Department of Information and Communication Engineering of the University of Elector-Communications. His research interests include cryptography, information security and quantum computations. He was awarded the SCIS’97 paper prize.  相似文献   

10.
In this paper we describe a form of communication that could be used for lifelong learning as contribution to cultural computing. We call it Kansei Mediation. It is a multimedia communication concept that can cope with non-verbal, emotional and Kansei information. We introduce the distinction between the concepts of Kansei Communication and Kansei Media. We then develop a theory of communication (i.e. Kansei Mediation) as a combination of both. Based on recent results from brain research the proposed concept of Kansei Mediation is developed and discussed. The biased preference towards consciousness in established communication theories is critically reviewed and the relationship to pre- and unconscious brain processes explored. There are two tenets of the Kansei Mediation communication theory: (1) communication based on connected unconciousness, and (2) Satori as the ultimate form of experience. Ryohei Nakatsu received the B.S. (1969), M.S. (1971) and Ph.D. (1982) degrees in electronic engineering from Kyoto University. After joining NTT in 1971, he mainly worked on speech recognition technology. He joined ATR (Advanced Telecommunications Research Institute) as the president of ATR Media Integration & Communications Research Laboratories (1994–2002). From the spring of 2002 he is full professor at School of Science and Technology, Kwansei Gakuin University in Sanda (Japan). At the same time he established a venture company, Nirvana Technology Inc., and became the president of the company. In 1978, he received Young Engineer Award from the Institute of Electronics, Information and Communication Engineers Japan (IEICE-J). In 1996, he received the best paper award from the IEEE International Conference on Multimedia. In 1999, 2000 and 2001, he was awarded Telecom System Award from Telecommunication System Foundation and the best paper award from Virtual Reality Society of Japan. In 2000, he got the best paper award from Artificial Intelligence Society of Japan. He is a fellow of the IEEE and the Institute of Electronics, Information and Communication Engineers Japan (IEICE-J), a member of the Acoustical Society of Japan, Information Processing Society of Japan, and Japanese Society for Artificial Intelligence. Matthias Rauterberg received the B.S. in psychology (1978) at the University of Marburg (Germany), the B.S. in philosophy (1981) and computer science (1983), the M.S. in psychology (1981) and computer science (1985) at the University of Hamburg (Germany), and the Ph.D. in computer science (1995) at the University of Zurich (Switzerland). He was a senior lecturer for ‘usability engineering’ in computer science and industrial engineering at the Swiss Federal Institute of Technology (ETH) in Zurich. He was the head of the Man–Machine Interaction research group (MMI) of the Institute for Hygiene and Applied Physiology (IHA) from the Department of Industrial Engineering at the ETH, Zurich. Since 1998, he is a fulltime professor for ‘human communication technology’ at the Department of Industrial Design at the Technical University Eindhoven (The Netherlands), and also since 2004, he is appointed as a visiting professor at the Kwansei Gakuin University (Japan). He received the German GI-HCI award for the best Ph.D. in 1997 and the Swiss Technology Award together with Martin Bichsel for the BUILD-IT system in 1998. Since 2005, he is elected as a member of the Cream of Science in The Netherlands. Ben Salem received the Dip.Arch. (1987) at the Ecole Polytechnique d'Architecture et d'Urbanisme EPAU (Algiers), the M.Arch. (1993) at the School of Architectural Studies of the University of Sheffield (UK), and the Ph.D. in electronics (2003) at the Department of Electronic and Electrical Engineering, University of Sheffield (UK). Since 2001, he is director of Polywork Ltd. (UK). Since 2003. he has a PostDoc position at the Department of Industrial Design of the Technical University Eindhoven (The Netherlands).  相似文献   

11.
A high performance communication facility, called theGigaE PM, has been designed and implemented for parallel applications on clusters of computers using a Gigabit Ethernet. The GigaE PM provides not only a reliable high bandwidth and low latency communication, but also supports existing network protocols such as TCP/IP. A reliable communication mechanism for a parallel application is implemented on the firmware on a NIC while existing network protocols are handled by an operating system kernel. A prototype system has been implemented using an Essential Communications Gigabit Ethernet card. The performance results show that a 58.3 μs round trip time for a four byte user message, and 56.7 MBytes/sec bandwidth for a 1,468 byte message have been achieved on Intel Pentium II 400 MHz PCs. We have implemented MPICH-PM on top of the GigaE PM, and evaluated the NAS parallel benchmark performance. The results show that the IS class S performance on the GigaE PM is 1.8 times faster than that on TCP/IP. Shinji Sumimoto: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He received BS degree in electrical engineering from Doshisha University. His research interest include parallel and distributed systems, real-time systems, and high performance communication facilities. He is a member of Information Processing Society of Japan. Hiroshi Tezuka: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include real-time systems and operating system kernel. He is a member of the Information Processing Society of Japan, and Japan Society for Software Science and Technology. Atsushi Hori, Ph.D.: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His current research interests include parallel operating system. He received B.S. and M.S. degrees in Electrical Engineering from Waseda University, and received Ph.D. from the University of Tokyo. He worked as a researcher in Mitsubishi Research Institute from 1981 to 1992. Hiroshi Harada: He is a Senior Researcher of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. His research interests include distributed/parallel systems and distributed shared memory. He received BS degree in physics from Science University of Tokyo. He is a member of ACM and Information Processing Society of Japan. Toshiyuki Takahashi: He is a Researcher at Real World Computing Partnership since 1998. He received his B.S. and M.S. from the Department of Information Sciences of Science University of Tokyo in 1993 and 1995. He was a student of the Information Science Department of the University of Tokyo from 1995 to 1998. His current interests are in meta-level architecture for programming languages and high-performance software technologies. He is a member of Information Processing Society of Japan. Yutaka Ishikawa, Ph.D.: He is the chief of Parallel and Distributed System Software Laboratory at Real World Computing Partnership, JAPAN. He is currently temporary retirement from Electrotechnical Laboratory, MITI. His research interests include distributed/parallel systems, object-oriented programming languages, and real-time systems. He received the B.S., M.S. and Ph.D degrees in electrical engineering from Keio University. He is a member of the IEEE Computer Society, ACM, Information Processing Society of Japan, and Japan Society for Software Science and Technology.  相似文献   

12.
This paper describes a musical instrument identification method that takes into consideration the pitch dependency of timbres of musical instruments. The difficulty in musical instrument identification resides in the pitch dependency of musical instrument sounds, that is, acoustic features of most musical instruments vary according to the pitch (fundamental frequency, F0). To cope with this difficulty, we propose an F0-dependent multivariate normal distribution, where each element of the mean vector is represented by a function of F0. Our method first extracts 129 features (e.g., the spectral centroid, the gradient of the straight line approximating the power envelope) from a musical instrument sound and then reduces the dimensionality of the feature space into 18 dimension. In the 18-dimensional feature space, it calculates an F0-dependent mean function and an F0-normalized covariance, and finally applies the Bayes decision rule. Experimental results of identifying 6,247 solo tones of 19 musical instruments shows that the proposed method improved the recognition rate from 75.73% to 79.73%. This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Grant-in-Aid for Scientific Research (A), No.15200015, and Informatics Research Center for Development of Knowledge Society Infrastructure (COE program of MEXT, Japan). Tetsuro Kitahara received the B.S. from Tokyo University of Science in 2002 and the M.S. from Kyoto University in 2004. He is currently a Ph.D. course student at Graduate School of Informatics, Kyoto University. Since 2005, he has been a Research Fellow of the Japan Society for the Promotion of Science. His research interests include music informatics. He recieved IPSJ 65th National Convention Student Award in 2003, IPSJ 66th National Convention Student Award and TELECOM System Technology Award for Student in 2004, and IPSJ 67th National Convention Best Paper Award for Young Researcher in 2005. He is a student member of IPSJ, IEICE, JSAI, ASJ, and JSMPC. Masataka Goto received his Doctor of Engineering degree in Electronics, Information and Communication Engineering from Waseda University, Japan, in 1998. He then joined the Electrotechnical Laboratory (ETL; reorganized as the National Institute of Advanced Industrial Science and Technology (AIST) in 2001), where he has been engaged as a researcher ever since. He served concurrently as a researcher in Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation (JST) from 2000 to 2003, and an associate professor of the Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering, University of Tsukuba since 2005. His research interests include music information processing and spoken language processing. Dr. Goto received seventeen awards including the IPSJ Best Paper Award and IPSJ Yamashita SIG Research Awards (MUS and SLP) from the Information Processing Society of Japan (IPSJ), Awaya Prize for Outstanding Presentation and Award for Outstanding Poster Presentation from the Acoustical Society of Japan (ASJ), Award for Best Presentation from the Japanese Society for Music Perception and Cognition (JSMPC), WISS 2000 Best Paper Award and Best Presentation Award, and Interaction 2003 Best Paper Award. He is a member of the IPSJ, ASJ, JSMPC, Institute of Electronics, Information and Communication Engineers (IEICE), and International Speech Communication Association (ISCA). Hiroshi G. Okuno received the B.A. and Ph.D from the University of Tokyo in 1972 and 1996, respectively. He worked for Nippon Telegraph and Telephone, Kitano Symbiotic Systems Project, and Tokyo University of Science. He is currently a professor at the Department of Intelligence Technology and Science, Graduate School of Informatics, Kyoto University. He was a visiting scholar at Stanford University, and a visiting associate professor at the University of Tokyo. He has done research in programming languages, parallel processing, and reasoning mechanism in AI, and he is currently engaged in computational auditory scene analysis, music scene analysis and robot audition. He received the best paper awards from the Japanese Society for Artificial Intelligence and the International Society for Applied Intelligence, in 1991 and 2001, respectively. He edited with David Rosenthal “Computational Auditory Scene Analysis” from Lawrence Erlbaum Associates in 1998 and with Taiichi Yuasa “Advanced Lisp Technology” from Taylor and Francis Inc. in 2002. He is a member of IPSJ, JSAI, JSSST, JSCS, ACM, AAAI, ASA, and IEEE.  相似文献   

13.
A concrete attack using side channel information from cache memory behaviour was proposed for the first time at ISITA 2002. The attack uses the difference between execution times associated with S-box cache-hits and cache-misses to recover the intermediate key. Recently, a theoretical estimation of the number of messages needed for the attack was proposed and it was reported that the average method obtains key information with fewer messages than maximum threshold or intermediate threshold method. Taking the structure of cipher into account, this paper provided the cache attack in which the average method is embodied, and provides improved key estimation. This paper includes the study on the attack that exploits internal collision. Yukiyasu Tsunoo received his BE degree from Waseda University in 1982, MS degree from JAIST, Dr.Eng from Chuo University. He joined NEC Software Hokuriku, Ltd. in 1985. He is now a research fellow of NEC Internet Systems Research Laboratories. He is engaged in the designing of common key ciphers and the study of evaluation technique. Dr. Tsunoo is a member of the Expert Commission of Information Security Research, The Institute of Electronics, Information and Communication Engineers, the Information Processing Society of Japan, the Japan Society for Security Management and the Atomic Energy Society of Japan. Etsuko Tsujihara received her BS degree from Aoyama Gakuin University in 1983. She joined NEC in 1983. She developed the VLSI automatic layout system. She joined NEC Software Hokuriku Ltd. in 1986 and Y.D.K. Co. Ltd. in 2004. She is engaged in the designing of common key ciphers and the study of evaluation technique. Maki Shigeri received her BE degree from University of Tsukuba in 1992. She joined NEC Software Hokuriku Ltd. in 1992. She is engaged in the designing of common key ciphers and the study of evaluation technique. Hiroyasu Kubo received his BE degree from Kanazawa Institute of Technology in 1990. He joined NEC Software Hokuriku Ltd. in 1990. He is engaged in the designing of common key ciphers and the study of evaluation technique. Kazuhiko Minematsu received his BS degree from Waseda University in 1996, MS degree in 1998 and joined NEC in 1998. He is engaged in the designing of common key ciphers and research on block cipher modes of operations. He is a member of the Information Processing Society of Japan, the Society of Information Theory and Its Applications.  相似文献   

14.
The security of the RSA cryptosystems is based on the difficulty of factoring a large composite integer. In 1994, Shor showed that factoring a large composite is executable in polynomial time if we use a quantum Turing machine. Since this algorithm is complicated, straightforward implementations seem impractical judging from current technologies. In this paper, we propose simple and efficient algorithms for factoring and discrete logarithm problem based on NMR quantum computers. Our algorithms are easier to implement if we consider NMR quantum computers with small qubits. A part of this work was done while both authors were with NTT Communication Science Laboratories. Noboru Kunihiro, Ph.D.: He is Assistant Professor of the University of Electro-Communications. He received his B.E., M.E. and Ph.D. in mathematical engineering and information physics from the University of Tokyo in 1994, 1996 and 2001, respectively. He had been engaged in the research on cryptography and information security at NTT Communication Science Laboratories from 1996 to 2002. Since 2002, he has been working for Department of Information and Communication Engineering of the University of Elector-Communications. His research interest includes cryptography, information security and quantum computations. He was awarded the SCIS’97 paper prize. Shigeru Yamashita, Ph.D.: Associate Professor of Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. He received his B.E., M.E. and Ph.D. degrees in information science from Kyoto University, Kyoto, Japan, in 1993, 1995 and 2001, respectively. His research interests include new type of computer architectures and quantum computation. He received the 2000 IEEE Circuits and Systems Society Transactions on Computer-Aided Design of Integrated Circuits and Systems Best Paper Award.  相似文献   

15.
Inductive logic programming (ILP) is concerned with the induction of logic programs from examples and background knowledge. In ILP, the shift of attention from program synthesis to knowledge discovery resulted in advanced techniques that are practically applicable for discovering knowledge in relational databases. This paper gives a brief introduction to ILP, presents selected ILP techniques for relational knowledge discovery and reviews selected ILP applications. Nada Lavrač, Ph.D.: She is a senior research associate at the Department of Intelligent Systems, J. Stefan Institute, Ljubljana, Slovenia (since 1978) and a visiting professor at the Klagenfurt University, Austria (since 1987). Her main research interest is in machine learning, in particular inductive logic programming and intelligent data analysis in medicine. She received a BSc in Technical Mathematics and MSc in Computer Science from Ljubljana University, and a PhD in Technical Sciences from Maribor University, Slovenia. She is coauthor of KARDIO: A Study in Deep and Qualitative Knowledge for Expert Systems, The MIT Press 1989, and Inductive Logic Programming: Techniques and Applications, Ellis Horwood 1994, and coeditor of Intelligent Data Analysis in Medicine and Pharmacology, Kluwer 1997. She was the coordinator of the European Scientific Network in Inductive Logic Programming ILPNET (1993–1996) and program cochair of the 8th European Machine Learning Conference ECML’95, and 7th International Workshop on Inductive Logic Programming ILP’97. Sašo Džeroski, Ph.D.: He is a research associate at the Department of Intelligent Systems, J. Stefan Institute, Ljubljana, Slovenia (since 1989). He has held visiting researcher positions at the Turing Institute, Glasgow (UK), Katholieke Universiteit Leuven (Belgium), German National Research Center for Computer Science (GMD), Sankt Augustin (Germany) and the Foundation for Research and Technology-Hellas (FORTH), Heraklion (Greece). His research interest is in machine learning and knowledge discovery in databases, in particular inductive logic programming and its applications and knowledge discovery in environmental databases. He is co-author of Inductive Logic Programming: Techniques and Applications, Ellis Horwood 1994. He is the scientific coordinator of ILPnet2, The Network of Excellence in Inductive Logic Programming. He was program co-chair of the 7th International Workshop on Inductive Logic Programming ILP’97 and will be program co-chair of the 16th International Conference on Machine Learning ICML’99. Masayuki Numao, Ph.D.: He is an associate professor at the Department of Computer Science, Tokyo Institute of Technology. He received a bachelor of engineering in electrical and electronics engineering in 1982 and his Ph.D. in computer science in 1987 from Tokyo Institute of Technology. He was a visiting scholar at CSLI, Stanford University from 1989 to 1990. His research interests include Artificial Intelligence, Global Intelligence and Machine Learning. Numao is a member of Information Processing Society of Japan, Japanese Society for Artificial Intelligence, Japanese Cognitive Science Society, Japan Society for Software Science and Technology and AAAI.  相似文献   

16.
This article deals with advanced topics of ontological engineering to convince readers ontology is more than a rule base of terminological problems and is worth to consider a promising methodology in the next generation knowledge processing research. Needless to say, ontology in AI is tightly connected to ontology in philosophy. The first topic here is on philosophical issues which are very important to properly understand what an ontology is. After defining class, instance andis-a relation, we point out some typical inappropriate uses ofis-a relation in existing ontologies and analyze the reasons why. Other topics are basic ontological distinction, part-of relation, and so on. As an advanced example of ontology, an ontology of representation is extensively discussed. To conclude this tutorial, a success story of ontological engineering is presented. It is concerned with a new kind of application of ontology, that is, knowledge systematization. An ontology-based framework for functional knowledge sharing has been deployed into a company for two years and has been a great success. Finally, future of ontological engineering is discussed followed by concluding remarks. Riichiro Mizoguchi, Ph.D.: He is Professor of the Department of Knowledge Systems, the Institute of Scientific and Industrial Research, Osaka University. He received his B.S., M.S., and Ph.D. degrees from Osaka University in 1972, 1974 and 1977 respectively. From 1978 to 1986 he was research associate in the Institute of Scientific and Industrial Research, Osaka University. From 1986 to 1989 he was Associate Professor there. His research interests include Non-parametric data analyses, Knowledge-based systems, Ontological engineering and Intelligent learning support systems. He is a member of the Japanese Society for Artificial Intelligence, the Institute of Electronics, Information and Communica-tion Engineers, the Information Processing Society of Japan, the Japanese Society for Information and Systems in Education, Intl. AI in Education (IAIED) Soc., AAAI, IEEE and APC of AACE. Currently, he is President of IAIED Soc. and APC of AACE. He received honorable mention for the Pattern Recognition Society Award, the Institute of Electronics, Information and Communication Engineers Award, 10th Anniversary Paper Award from the Japanese Society for Artificial Intelligence and Best paper Award of ICCE99 in 1985, 1988, 1996 and 1999, respectively. He can be reached at miz@ei.sanken.osaka-u.ac.jp  相似文献   

17.
This paper proposes a new, efficient algorithm for extracting similar sections between two time sequence data sets. The algorithm, called Relay Continuous Dynamic Programming (Relay CDP), realizes fast matching between arbitrary sections in the reference pattern and the input pattern and enables the extraction of similar sections in a frame synchronous manner. In addition, Relay CDP is extended to two types of applications that handle spoken documents. The first application is the extraction of repeated utterances in a presentation or a news speech because repeated utterances are assumed to be important parts of the speech. These repeated utterances can be regarded as labels for information retrieval. The second application is flexible spoken document retrieval. A phonetic model is introduced to cope with the speech of different speakers. The new algorithm allows a user to query by natural utterance and searches spoken documents for any partial matches to the query utterance. We present herein a detailed explanation of Relay CDP and the experimental results for the extraction of similar sections and report results for two applications using Relay CDP. Yoshiaki Itoh has been an associate professor in the Faculty of Software and Information Science at Iwate Prefectural University, Iwate, Japan, since 2001. He received the B.E. degree, M.E. degree, and Dr. Eng. from Tokyo University, Tokyo, in 1987, 1989, and 1999, respectively. From 1989 to 2001 he was a researcher and a staff member of Kawasaki Steel Corporation, Tokyo and Okayama. From 1992 to 1994 he transferred as a researcher to Real World Computing Partnership, Tsukuba, Japan. Dr. Itoh's research interests include spoken document processing without recognition, audio and video retrieval, and real-time human communication systems. He is a member of ISCA, Acoustical Society of Japan, Institute of Electronics, Information and Communication Engineers, Information Processing Society of Japan, and Japan Society of Artificial Intelligence. Kazuyo Tanaka has been a professor at the University of Tsukuba, Tsukuba, Japan, since 2002. He received the B.E. degree from Yokohama National University, Yokohama, Japan, in 1970, and the Dr. Eng. degree from Tohoku University, Sendai, Japan, in 1984. From 1971 to 2002 he was research officer of Electrotechnical Laboratory (ETL), Tsukuba, Japan, and the National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan, where he was working on speech analysis, synthesis, recognition, and understanding, and also served as chief of the speech processing section. His current interests include digital signal processing, spoken document processing, and human information processing. He is a member of IEEE, ISCA, Acoustical Society of Japan, Institute of Electronics, Information and Communication Engineers, and Japan Society of Artificial Intelligence. Shi-Wook Lee received the B.E. degree and M.E. degree from Yeungnam University, Korea and Ph.D. degree from the University of Tokyo in 1995, 1997, and 2001, respectively. Since 2001 he has been working in the Research Group of Speech and Auditory Signal Processing, the National Institute of Advanced Science and Technology (AIST), Tsukuba, Japan, as a postdoctoral fellow. His research interests include spoken document processing, speech recognition, and understanding.  相似文献   

18.
In this paper, we present a new method for fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers. The proposed method considers the centroid points and the standard deviations of generalized trapezoidal fuzzy numbers for ranking generalized trapezoidal fuzzy numbers. We also use an example to compare the ranking results of the proposed method with the existing centroid-index ranking methods. The proposed ranking method can overcome the drawbacks of the existing centroid-index ranking methods. Based on the proposed ranking method, we also present an algorithm to deal with fuzzy risk analysis problems. The proposed fuzzy risk analysis algorithm can overcome the drawbacks of the one we presented in [7]. Shi-Jay Chen was born in 1972, in Taipei, Taiwan, Republic of China. He received the B.S. degree in information management from the Kaohsiung Polytechnic Institute, Kaohsiung, Taiwan, and the M.S. degree in information management from the Chaoyang University of Technology, Taichung, Taiwan, in 1997 and 1999, respectively. He received the Ph.D. degree at the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, in October 2004. His research interests include fuzzy systems, multicriteria fuzzy decisionmaking, and artificial intelligence. Shyi-Ming Chen was born on January 16, 1960, in Taipei, Taiwan, Republic of China. He received the Ph.D. degree in Electrical Engineering from National Taiwan University, Taipei, Taiwan, in June 1991. From August 1987 to July 1989 and from August 1990 to July 1991, he was with the Department of Electronic Engineering, Fu-Jen University, Taipei, Taiwan. From August 1991 to July 1996, he was an Associate Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1996 to July 1998, he was a Professor in the Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan. From August 1998 to July 2001, he was a Professor in the Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. Since August 2001, he has been a Professor in the Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. He was a Visiting Scholar in the Department of Electrical Engineering and Computer Science, University of California, Berkeley, in 1999. He was a Visiting Scholar in the Institute of Information Science, Academia Sinica, Republic of China, in 2003. He has published more than 250 papers in referred journals, conference proceedings and book chapters. His research interests include fuzzy systems, information retrieval, knowledge-based systems, artificial intelligence, neural networks, data mining, and genetic algorithms. Dr. Chen has received several honors and awards, including the 1994 Outstanding Paper Award o f the Journal of Information and Education, the 1995 Outstanding Paper Award of the Computer Society of the Republic of China, the 1995 and 1996 Acer Dragon Thesis Awards for Outstanding M.S. Thesis Supervision, the 1995 Xerox Foundation Award for Outstanding M.S. Thesis Supervision, the 1996 Chinese Institute of Electrical Engineering Award for Outstanding M.S. Thesis Supervision, the 1997 National Science Council Award, Republic of China, for Outstanding Undergraduate Student's Project Supervision, the 1997 Outstanding Youth Electrical Engineer Award of the Chinese Institute of Electrical Engineering, Republic of China, the Best Paper Award of the 1999 National Computer Symposium, Republic of China, the 1999 Outstanding Paper Award of the Computer Society of the Republic of China, the 2001 Institute of Information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the 2001 Outstanding Talented Person Award, Republic of China, for the contributions in Information Technology, the 2002 Institute of information and Computing Machinery Thesis Award for Outstanding M.S. Thesis Supervision, the Outstanding Electrical Engineering Professor Award granted by the Chinese Institute of Electrical Engineering (CIEE), Republic of China, the 2002 Chinese Fuzzy Systems Association Best Thesis Award for Outstanding M.S. Thesis Supervision, the 2003 Outstanding Paper Award of the Technological and Vocational Education Society, Republic of China, the 2003 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision, the 2005 Acer Dragon Thesis Award for Outstanding Ph.D. Dissertation Supervision, the 2005 Taiwan Fuzzy Systems Association Award for Outstanding Ph.D. Dissertation Supervision, and the 2006 “Operations Research Society of Taiwan” Award for Outstanding M.S. Thesis Supervision. Dr. Chen is currently the President of the Taiwanese Association for Artificial Intelligence (TAAI). He is a Senior Member of the IEEE, a member of the ACM, the International Fuzzy Systems Association (IFSA), and the Phi Tau Phi Scholastic Honor Society. He was an administrative committee member of the Chinese Fuzzy Systems Association (CFSA) from 1998 to 2004. He is an Associate Editor of the IEEE Transactions on Systems, Man, and Cybernetics - Part C, an Associate Editor of the IEEE Computational Intelligence Magazine, an Associate Editor of the Journal of Intelligent & Fuzzy Systems, an Editorial Board Member of the International Journal of Applied Intelligence, an Editor of the New Mathematics and Natural Computation Journal, an Associate Editor of the International Journal of Fuzzy Systems, an Editorial Board Member of the International Journal of Information and Communication Technology, an Editorial Board Member of the WSEAS Transactions on Systems, an Editor of the Journal of Advanced Computational Intelligence and Intelligent Informatics, an Associate Editor of the WSEAS Transactions on Computers, an Editorial Board Member of the International Journal of Computational Intelligence and Applications, an Editorial Board Member of the Advances in Fuzzy Sets and Systems Journal, an Editor of the International Journal of Soft Computing, an Editor of the Asian Journal of Information Technology, an Editorial Board Member of the International Journal of Intelligence Systems Technologies and Applications, an Editor of the Asian Journal of Information Management, an Associate Editor of the International Journal of Innovative Computing, Information and Control, and an Editorial Board Member of the International Journal of Computer Applications in Technology. He was an Editor of the Journal of the Chinese Grey System Association from 1998 to 2003. He is listed in International Who's Who of Professionals, Marquis Who's Who in the World, and Marquis Who's Who in Science and Engineering.  相似文献   

19.
20.
When dealing with long video data, the task of identifying and indexing all meaningful subintervals that become answers to some queries is infeasible. It is infeasible not only when done by hand but even when done by using latest automatic video indexing techniques. Whether manually or automatically, it is only fragmentary video intervals that we can identify in advance of any database usage. Our goal is to develop a framework for retrieving meaningful intervals from such fragmentarily indexed video data. We propose a set of algebraic operations that includes ourglue join operations, with which we can dynamically synthesize all the intervals that are conceivably relevant to a given query. In most cases, since these operations also produce irrelevant intervals, we also define variousselection operations that are useful in excluding them from the answer set. We also show the algebraic properties possessed by those operations, which establish the basis of an algebraic query optimization. Katsumi Tanaka, D. Eng.: He received his B.E., M.E., and D.Eng. degrees in information science from Kyoto University, in 1974, 1976, and 1981, respectively. Since 1994, he is a professor of the Department of Computer and Systems Engineering and since 1997, he is a professor of the Division of Information and Media Sciences, Graduate School of Science and Technology, Kobe University. His research interests include object-oriented, multimedia and historical databases abd multimedia information systems. He is a member of the ACM, IEEE Computer Society and the Information Processing Society of Japan. Keishi Tajima, D.Sci.: He received his B.S, M.S., and D.S. from the department of information science of University of Tokyo in 1991, 1993, and 1996 respectively. Since 1996, he is a Research Associate in the Department of Computer and Systems Engineering at Kobe University. His research interests include data models for non-traditional database systems and their query languages. He is a member of ACM, ACM SIGMOD, Information Processing Society of Japan (IPSJ), and Japan Society for Software Science and Technology (JSSST). Takashi Sogo, M.Eng.: He received B.E. and M.E. from the Department of Computer and Systems Engineering, Kobe University in 1998 and 2000, respectively. Currently, he is with USAC Systems Co. His research interests include video database systems. Sujeet Pradhan, D.Eng.: He received his BE in Mechanical Engineering from the University of Rajasthan, India in 1988, MS in Instrumentation Engineering in 1995 and Ph.D. in Intelligence Science in 1999 from Kobe University, Japan. Since 1999 May, he is a lecturer of the Department of Computer Science and Mathematics at Kurashiki University of Science and the Arts, Japan. A JSPS (Japan Society for the Promotion of Science) Research Fellow during the period between 1997 and 1999, his research interests include video databases, multimedia authoring, prototypebased languages and semi-structured databases. Dr. Pradhan is a member of Information Processing Society of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号