首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
There are problems in the classical linear theory of elasticity whose closed form solutions, while satisfying the governing equations of equilibrium together with well-posed boundary conditions, predict the existence of regions, often quite small, inside the body where material overlaps. Of course, material overlapping is not physically realistic, and one possible way to prevent it combines linear theory with the requirement that the deformation field be injective. A formulation of minimization problems in classical linear elasticity proposed by Fosdick and Royer [3] imposes this requirement through a Lagrange multiplier technique. An existence theorem for minimizers of plane problems is also presented. In general, however, it is not certain that such minimizers exist. Here, the Euler–Lagrange equations corresponding to a family of three-dimensional problems is investigated. In classical linear elasticity, these problems do not have bounded solutions inside a body of anisotropic material for a range of material parameters. For another range of parameters, bounded solutions do exist but yield stresses that are infinite at a point inside the body. In addition, these solutions are not injective in a region surrounding this point, yielding unrealistic behavior such as overlapping of material. Applying the formulation of Fosdick and Royer on this family of problems, it is shown that both the displacements and the constitutive part of the stresses are bounded for all values of the material parameters and that the injectivity constraint is preserved. In addition, a penalty functional formulation of the constrained elastic problems is proposed, which allows to devise a numerical approach to compute the solutions of these problems. The approach consists of finding the displacement field that minimizes an augmented potential energy functional. This augmented functional is composed of the potential energy of linear elasticity theory and of a penalty functional divided by a penalty parameter. A sequence of solutions is then constructed, parameterized by the penalty parameter, that converges to a function that satisfies the first variation conditions for a minimizer of the constrained minimization problem when this parameter tends to infinity. This approach has the advantages of being mathematically appealling and computationally simple to implement.  相似文献   

2.
Rupture of intracranial saccular aneurysms is the leading cause of spontaneous subarachnoid hemorrhage, which results in significant morbidity and mortality. Although many have suggested that saccular aneurysms enlarge and rupture due to mechanical instabilities, our recent nonlinear analyses suggest that at least certain classes of aneurysms do not exhibit a quasi-static limit point instability or dynamic instabilities in response to periodic loading. Based on an increased understanding of the ubiquitous role of growth and remodeling within the vasculature and recent histopathological data on saccular aneurysms, it is hypothesized that a stress-mediated regulation of collagen turnover causes their enlargement. There is a need, however, for a theoretical framework to explore this and competing hypotheses. In this paper, we present a 2-D constrained mixture model for growth and remodeling of an ellipsoidally shaped saccular aneurysm and numerically simulate enlargement and changes in material symmetry in the aneurysmal wall. Results suggest that ellipsoidal aneurysms tend toward spherical shapes, and a competition between radial expansion and wall thickening plays a critical role in determining the stability of an enlarging lesion.  相似文献   

3.
In this paper we derive and mathematically justify models of micropolar rods and plates from the equations of linearized micropolar elasticity. Derivation is based on the asymptotic techniques with respect to the small parameter being the thickness of the elastic body we consider. Justification of the models is obtained through the convergence result for the displacement and microrotation fields when the thickness tends to zero. The limiting microrotation is then related to the macrorotation of the cross–section (transversal segment) and the model is rewritten in terms of macroscopic unknowns. The obtained models are recognized as being either the Reissner–Mindlin plate or the Timoshenko beam type.  相似文献   

4.
Hydrocephalus is a condition which occurs when an excessive accumulation of cerebrospinal fluid in the brain causes enlargement of the ventricular cavities. Modern treatments of shunt implantation are effective, but have an unacceptably high rate of failure in most reported series. One of the common factors causing shunt failure is the misplacement of the proximal catheter's tip, which can be remedied if the healed configuration of the ventricular space can be predicted. In a recent study we have shown that this is accomplished by a mathematical model which requires as input the knowledge of the speed at which the ventricular walls move inwardly. In this paper we report on a theoretical method of calculating this speed and show that it will become of great practical usefulness as soon as more experimental results become available.  相似文献   

5.
By definition, a homogeneous isotropic compressible Hadamard material has the property that an infinitesimal longitudinal homogeneous plane wave may propagate in every direction when the material is maintained in a state of arbitrary finite static homogeneous deformation. Here, as regards the wave, homogeneous means that the direction of propagation of the wave is parallel to the direction of eventual attenuation; and longitudinal means that the wave is linearly polarized in a direction parallel to the direction of propagation. In other words, the displacement is of the form u = ncos k(n · xct), where n is a real vector. It is seen that the Hadamard material is the most general one for which a longitudinal inhomogeneous plane wave may also propagate in any direction of a predeformed body. Here, inhomogeneous means that the wave is attenuated, in a direction distinct from the direction of propagation; and longitudinal means that the wave is elliptically polarized in the plane containing these two directions, and that the ellipse of polarization is similar and similarly situated to the ellipse for which the real and imaginary parts of the complex wave vector are conjugate semi-diameters. In other words, the displacement is of the form u = {S exp i(S · xct)}, where S is a complex vector (or bivector). Then a Generalized Hadamard material is introduced. It is the most general homogeneous isotropic compressible material which allows the propagation of infinitesimal longitudinal inhomogeneous plane circularly polarized waves for all choices of the isotropic directional bivector. Finally, the most general forms of response functions are found for homogeneously deformed isotropic elastic materials in which longitudinal inhomogeneous plane waves may propagate with a circular polarization in each of the two planes of central circular section of the n -ellipsoid, where is the left Cauchy-Green strain tensor corresponding to the primary pure homogeneous deformation.  相似文献   

6.
We study the effect of fiber recruitment on the mechanical response of a fiber reinforced non-linearly elastic tube that is both swollen and pressurized. Attention is restricted to cylindrically symmetric tube deformation. The constitutive model permits fibers to support tension, but not compression. While many combinations of pressure and swelling cause all of the fibers to be recruited for load support, both large swelling and large deswelling can give rise to fiber derecruitment at certain locations in the tube. This leads to less channel opening than would be the case if the fibers provided support while contracted. The transition between mechanically active and mechanically inactive fibers can be described in terms of the quasi-static motion of a fiber recruiting interface.  相似文献   

7.
The purpose of this work is to study the existence of solutions for an unsteady fluid-structure interaction problem. We consider a three-dimensional viscous incompressible fluid governed by the Navier–Stokes equations, interacting with a flexible elastic plate located on one part of the fluid boundary. The fluid domain evolves according to the structure’s displacement, itself resulting from the fluid force. We prove the existence of at least one weak solution as long as the structure does not touch the fixed part of the fluid boundary. The same result holds also for a two-dimensional fluid interacting with a one-dimensional membrane.  相似文献   

8.
水小平 《力学学报》1997,29(6):755-760
在黎曼位形空间中研究了约束多体系统的动力学问题.通过对约束矩阵的奇异值分解和修正的Gram Schmidt过程构造了系统流形的法向和切向子空间的正交归一化基,将系统的动力学方程沿这双基进行投影,得到了求系统动力学响应的新型公式,给出了其数值分析的一种方法,并举了算例.  相似文献   

9.
The present work aims at constructing a theoretical framework within which to address the issues of morphological instabilities (one-dimensional step bunching and two-dimensional step meandering), alloying, and phase segregation in binary systems in the context of (physical or chemical) vapor deposition. The length scale of interest, although nanoscopic, is sufficiently large that the steps on a vicinal surface can be viewed as smooth curves and, correspondingly, the theory is a continuum one. In a departure from theories inaugurated by Burton, Cabrera, and Frank [The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. Roy. Soc. A 243 (1951) 299–358] the steps are endowed with a thermodynamic structure whose main ingredients are a step free-energy density and edge species chemical potentials. Moreover, crystal anisotropy, with its altering of the dynamics of steps and the associated morphological instabilities, is accounted for – in a manner consistent with the second law – both in the thermodynamic and kinetic properties of terraces and, more importantly, of steps. Additionally, in contrast with most of the literature on the subject (cf. [J. Krug, Introduction to step dynamics and step instabilities. In: A. Voigt (ed.) Multiscale Modeling in Epitaxial Growth. Birkhäusser, Berlin (2005)]), adsorption–desorption along the steps, bulk atomic diffusion, and chemical reactions (both on the terraces and along the step edges) are incorporated and coupled to the other mechanisms, e.g., terrace adatom diffusion and step attachment–detachment kinetics, whose interplay governs the evolution of steps on vicinal surfaces. Importantly, aided by the concept of configurational forces for which a separate balance law is postulated Configurational Forces as Basic Concepts of Continuum Physics. Springer, Berlin Heidelberg New York (2000)]), the proposed theory allows the steps to evolve away from local equilibrium thus contributing to a general treatment of the dynamics of steps. Finally, a specialization to the epitaxy of binary compounds and alloys is afforded, yielding a generalization of the classical Gibbs–Thomson relation in the former and novel evolution equations for an individual step in the latter.  相似文献   

10.
In this paper, a novel approach which considers gradient effects and uses non-deforming boundary conditions is adopted to construct the unique solution for necking in a hyper-elastic rod. We study the problem of the large axially symmetric deformations of a rod composed of an incompressible Ogden’s hyper-elastic material subject to a tensile stress (or a given displacement) when its two ends are fixed to rigid bodies. The attention is on the class of energy functions for which the stress–strain curve in the case of the uniaxial tension has a peak and valley combination. A phase-plane analysis is introduced to study the qualitative behaviour of the solutions. Then, by using the non-deforming conditions at two ends, the solutions corresponding to trajectories in different phase planes are obtained. It turns out that the non-deforming conditions play an important role in selecting the solutions. Further, by converting the problem into a displacement-controlled problem, the unique solution is obtained. The engineering strain and engineering stress curve plotted from our solution exhibits two interesting phenomena: (i) After the stress reaches the peak value there is a sudden stress drop; (ii) Afterwards it is followed by a stress plateau. Some mathematical explanations on these two phenomena are then given.  相似文献   

11.
We present a solution for the tensor equation TX + XT T = H, where T is a diagonalizable (in particular, symmetric) tensor, which is valid for any arbitrary underlying vector space dimension n. This solution is then used to derive compact expressions for the derivatives of the stretch and rotation tensors, which in turn are used to derive expressions for the material time derivatives of these tensors. Some existing expressions for n = 2 and n = 3 are shown to follow from the presented solution as special cases. An alternative methodology for finding the derivatives of diagonalizable tensor-valued functions that is based on differentiating the spectral decomposition is also discussed. Lastly, we also present a method for finding the derivatives of the exponential of an arbitrary tensor for arbitrary n.  相似文献   

12.
We study here the three-dimensional motion of an elastic structure immersed in an incompressible viscous fluid. The structure and the fluid are contained in a fixed bounded connected set Ω. We show the existence of a weak solution for regularized elastic deformations as long as elastic deformations are not too important (in order to avoid interpenetration and preserve orientation on the structure) and no collisions between the structure and the boundary occur. As the structure moves freely in the fluid, it seems natural (and it corresponds to many physical applications) to consider that its rigid motion (translation and rotation) may be large. The existence result presented here has been announced in [4]. Some improvements have been provided on the model: the model considered in [4] is a simplified model where the structure motion is modelled by decoupled and linear equations for the translation, the rotation and the purely elastic displacement. In what follows, we consider on the structure a model which represents the motion of a structure with large rigid displacements and small elastic perturbations. This model, introduced by [15] for a structure alone, leads to coupled and nonlinear equations for the translation, the rotation and the elastic displacement.  相似文献   

13.
Recursive matrix relations concerning the kinematics and the dynamics of a constrained robotic system, schematized by several kinematical chains, are established in this paper. Introducing frames and bases, we first analyze the geometrical properties of the mechanism and derive a general set of relations. Kinematics of the vector system of velocities and accelerations for each element of robot are then obtained. Expressed for every independent loop of the robot, useful conditions of connectivity regarding the relative velocities and accelerations are determined for direct or inverse kinematics problem. Based on the general principle of virtual powers, final matrix relations written in a recursive compact form express just the explicit dynamics equations of a constrained robotic system. Establishing active forces or actuator torques in an inverse dynamic problem, these equations are useful in fact for real-time control of a robot.  相似文献   

14.
Vibration mode of the constrained damping cantilever is built up according to the mode superposition of the elastic cantilever beam. The control equation of the constrained damping cantilever beam is then derived using Lagrange's equation. Dynamic response of the constrained damping cantilever beam is obtained according to the principle of virtual work, when the concentrated force is suddenly unloaded. Frequencies and transient response of a series of constrained damping cantilever beams are calculated and tested. Influence of parameters of the damping layer on the response time is analyzed. Analyitcal and experimental approaches are used for verification. The results show that the method is reliable.  相似文献   

15.
We consider an inhomogeneity-matrix system from a particular class of compressible hyperelastic materials of harmonic-type undergoing finite plane deformations. We obtain the complete solution for a perfectly bonded circular inhomogeneity when the system is subjected to non-uniform remote stress characterized by stress functions described by general polynomials of order n?1 in the corresponding complex-variable z used to describe the matrix.  相似文献   

16.
17.
The purpose of this paper is to introduce and to discuss several main variation principles in nonlinear theory of elasticity——namely the classic potential energy principle, complementary energyprinciple, and other two complementary energy principles (Levinson principle and Fraeijs de Veu-beke principle) which are widely discussed in recent literatures. At the same time, the generalized variational principles are given also for all these principles. In this paper, systematic derivation and rigorous proof are given to these variational principles on the unified bases of principle of virtual work, and the intrinsic relations between these principles are also indicated. It is shown that, these principles have unified bases, and their differences are solely due to the adoption of different variables and Legendre tarnsformation. Thus, various variational principles constitute an organized totality in an unified frame. For those variational principles not discussed in this paper, the same frame can also be used, a diagram is given to illustrate the interrelationships between these principles.  相似文献   

18.
19.
Our earlier derived bounds on the elastic moduli of two-dimensional random polycrystals [1, 2] involve a geometric restriction through an assumption on the form of an isotropic eight-rank tensor. The general form of the tensor is used in this study to reconstruct the bounds, which are expected to approach the scatter range for the moduli of the irregular aggregate.  相似文献   

20.
A principle of virtual work is proposed for thermo-elastic bodies. From it are derived the equations of motion, the Cauchy stress principle and the Gibbs relations. The principle is also used to analyse the response of internally constrained bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号