首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Four common beans (black, kidney, great northern, and pinto) were extracted with hexane and found to contain about 2% triacylglycerols. The fatty acids in these bean oils were mainly linolenic (41.7–46 wt%), linoleic (24.1–33.4 wt%), palmitic (10.7–12.7 wt%) and oleic (5.2–9.5 wt%). Because of the high levels of polyunsaturated fatty acids, the bean oils had iodine values between 174 and 177 g/100 g (compared to 130 g/100 g for soybean oil). Yet, the bean oils exhibited high oxidative stability due to the presence of high amounts of tocopherols (2,670–2,970 ppm). The bean oils had lower pour points (−18 to −11 °C) compared to −9 °C for soybean oil. Among the four bean oils, kidney bean oil had the highest acid value (15.4 mg KOH/g) and kinematic viscosities over a wide range of temperatures.  相似文献   

2.
Tocopherols have been purified from deodorizer distillate produced in the final deodorization step of vegetable oil refining by a process including molecular distillation. Deodorizer distillate contains mainly tocopherols, sterols, and free fatty acids (FFA); the presence of sterols hinders tocopherol purification in good yield. We found that Candida rugosa lipase recognized sterols as substrates but not tocopherols, and that esterification of sterols with FFA could be effected with negligible influence of water content. Enzymatic esterification of sterols with FFA was thus used as a step in tocopherol purification. High boiling point substances including steryl esters were removed from soybean oil deodorizer distillate by distillation, and the resulting distillate (soybean oil deodorizer distillate tocopherol concentrate; SODDTC) was used as a starting material for tocopherol purification. Several factors affecting esterification of sterols were investigated, and the reaction conditions were determined as follows: A mixture of SODDTC and water (4∶1, w/w) was stirred at 35°C for 24 h with 200 U of Candida lipase per 1 g of the reaction mixture. Under these conditions, approximately 80% of sterols was esterified, but tocopherols were not esterified. After the reaction, tocopherols and FFA were recovered as a distillate by molecular distillation of the oil layer. To enhance further removal of the remaining sterols, the lipase-catalyzed reaction was repeated on the distillate under the same reaction conditions. As a result, more than 95% of the sterols was esterified in total. The resulting reaction mixture was fractionated to four distillates and one residue. The main distillate fraction contained 65 wt% tocopherols with low contents of FFA and sterols. In addition, the residue fraction contained high-purity steryl esters. Because the process presented in this study includes only organic solvent-free enzymatic reaction and molecular distillation, it is feasible as a new industrial purification method of tocopherols. This work was presented at the Biocatalysis symposium in April 2000, held at the 91st Annual Meeting and Expo of the American Oil Chemists Society, San Diego, CA.  相似文献   

3.
The optimal concentration for tocopherols to inhibit soybean oil oxidation was determined for individual tocopherols (α-, γ-, and δ-tocopherol) and for the natural soybean oil tocopherol mixture (tocopherol ratio of 1∶13∶5 for α-, γ-, and δ-tocopherol, respectively). The concentration of the individual tocopherols influenced oil oxidation rates, and the optimal concentrations were unique for each tocopherol. For example, the optimal concentrations for α-tocopherol and γ-tocopherol were ∼100 and ∼300 ppm, respectively, whereas δ-tocopherol did not exhibit a distinct concentration optimum at the levels studied (P<0.05). The optimal concentration for the natural tocopherol mixture ranged between 340 and 660 ppm tocopherols (P<0.05). The antioxidant activity of the tocopherols diminished when the tocopherol levels exceeded their optimal concentrations. Above their optimal concentrations, the individual tocopherols and the tocopherol mixture exhibited prooxidation behavior that was more pronounced with increasing temperature from 40 to 60°C (P<0.05). A comparison of the antioxidant activity of the individual tocopherols at their optimal concentrations revealed that α-tocopherol (∼100 ppm) was 3–5 times more potent than γ-tocopherol (∼300 ppm) and 16–32 times more potent than δ-tocopherol (∼1900 ppm).  相似文献   

4.
Efficiencies of synthetic adsorbents and attapulgites in bleaching alkali-refined rapeseed and soybean oils ranged from 13–53% and 93–97%, respectively. The Freundlich equation was more applicable than the Langmuir equation to the experimental adsorption isotherms of β-carotene on attapulgites. Bleaching with attapulgites reduced tocopherols by 12.5–29.5% in rapeseed oil and by 18.9–44.8% in soybean oil. Cosmetic-grade attapulgite was superior to the others in bleaching efficiency, equilibrium amount adsorbed and removal of free fatty acids.  相似文献   

5.
The deodoriser distillate (DOD) of Indian soybean oil obtained from two industries processing soybean oil was investigated for its physicochemical characteristics, its composition of tocopherols, phytosterols, fatty acids and recovery of phytosterols for use in nutraceutical products. It was found that the two DOD samples studied were dark in color and had higher amounts of free fatty acids (22.7 and 49.9%), unsaponifiable matter (11.8 and 21.9%) (5–10 times found in soybean oil), total tocopherols (1957–2256 mg/100 g) (20 times the amount in soybean oil), and 6–10% of phytosterols (12–20 times the soybean oil). The fatty acids found were palmitic (23.2–25.5%), stearic (1.4–2.4%), oleic (23.8–26.1%), linoleic (40.4–41.1%) and linolenic (2.7–3.2%) acids. The unsaponifiable matter (21.9%) and phytosterols (8.7%) content of DOD-2 were higher than in DOD-1 and hence was more suited for isolation of phytosterols. Using hexane and water for crystallisation, the DOD-2 yielded a phytosterol fraction with lower recovery of 13.2–17.8% while treatment with alkali to remove FFA and the glycerides followed by organic solvent extraction yielded unsaponifiable matter containing phytosterols with a recovery of 74.6%. Later the unsaponifiable matter was purified by double crystallisation into a mixture of phytosterols of 87% purity containing β-sitosterol (34.3%), stigmasterol (3.1%) and campesterol (50.1%). The product may find use in foods, pharmaceuticals, cosmetics and allied industries probably as a nutraceutical.  相似文献   

6.
Tamar Gutfinger  A. Letan 《Lipids》1972,7(7):483-487
Reaction gas chromatography was found to be helpful in elucidating structures of tocopherol dimers. By this method γ- and δ-tocopherols were determined as monomers derived from tocopherol dimers, after isolation of the latter compounds from soybean oil. It was shown that gas chromatographic determination of tocopherols, as performed by injection of total unsaponifiables from soybean oil, will give results too high; the eluted tocopherols will account for both tocopherol monomers and dimers.  相似文献   

7.
A distillate was obtained by molecular distillation of oil extracted from distillers dried grains (DDG). The distillers dried grain oil distillate (DDGD) contained phytosterols, steryl ferulates, tocopherols, tocotrienols, and carotenoids. DDGD was tested for its impact on the oxidative stability index (OSI) at 110 °C of soybean, sunflower, and high-oleic sunflower oils, as well as the same oils that were stripped of their natural tocopherols and phytosterols. In addition, the impact of added DDGD on the stability of stripped sunflower oil during an accelerated storage study conducted at 60 °C was also determined. DDGD (0.5–1% w/w) had little impact on the OSI of soybean, sunflower, and high-oleic sunflower oil, but at levels of 0.1–1% it significantly increased the OSI for stripped soybean, sunflower, and high-oleic sunflower oil in a dose-dependent manner. DDGD also delayed peroxide value, conjugated diene, and hexanal formation during accelerated storage of stripped sunflower oil. The antioxidant activity is probably due to the combination of tocopherols, tocotrienols, and steryl ferulates.  相似文献   

8.
Analysis of free and esterified sterols in vegetable oils   总被引:2,自引:6,他引:2  
In vegetable oils, phytosterols occur as free sterols or as steryl esters. Few analytical methods report the quantification of esterified and free sterols in vegetable oils. In this study, esterified and free sterols were separated by silica gel column chromatography upon elution with n-hexane/ethyl acetate (90∶10 vol/vol) followed by n-hexane/diethyl ether/ethanol (25∶25∶50 by vol). Both fractions were saponified separately and the phytosterol content was quantified by GC. The analytical method for the analysis of esterified and free sterols had a relative standard deviation of 1.16% and an accuracy of 93.6–94.1%, which was comparable to the reference method for the total sterol analysis. A large variation in the content and distribution of the sterol fraction between different vegetable oils can be observed. Corn and rapeseed oils were very rich in phytosterols, which mainly occurred as steryl esters (56–60%), whereas the majority of the other vegetable oils (soybean, sunflower, palm oil, etc.) contained a much lower esterified sterol content (25–40%). No difference in the relative proportion of the individual sterols among crude and refined vegetable oils was observed.  相似文献   

9.
Supercritical fluid extraction of olive pomace, the semisolid residue obtained using two-phase olive oil production systems, and supercritical fluid chromatographic separation of the extracts were performed to study the content of tocopherols, a group of compounds of interest for the food industry owing to their antioxidant activity. The developed method consists of supercritical CO2 extraction at pilot plant scale and subsequent fractionation by two successive depressurizations. Enrichment of α-, β-, and γ-tocopherol was achieved in separator 2 when working at low densities in the first separator. Fractions obtained using high densities in separator 1 contained major proportions of triglycerides, waxes, and sterols. Tocopherols from olive by-products were separated and quantified in an environmentally friendly way by using supercritical fluid chromatography with packed capillary columns coated with polyethylene glycol and neat CO2 according to a method previously optimized in our laboratory. The studied olive by-products can be considered a natural source of antioxidants because substantial concentration of tocopherols have been obtained in the extracts. The isolation and separation of tocopherols from olive pomace by applying supercritical fluid technology provides an interesting approach to exploit such by-products in an environmentally friendly way.  相似文献   

10.
Summary A method for the analysis of the total tocopherols in soybean oil has been presented, and judged by distillation and other procedures is estimated to be accurate to within 10%. A discussion is made of the tocopherol to within 10%. A discussion is made of the tocopherol losses in various steps of soybean oil refining. Communication No. 115 from the Research Laboratories of Distillation Products, Inc., Rochester, New York. (Presented at The American Oil Chemists Society meeting in New Orleans, May 20–22, 1947.)  相似文献   

11.
The isolation of tocopherols and sterols together as a concentrate from sunflower oil deodorizer distillate was investigated. The sunflower oil deodorizer distillate was composed of 24.9% unsaponifiable matter with 4.8% tocopherols and 9.7% sterols, 28.8% free fatty acid (FFA) and 46.3% neutral glycerides. The isolation technology included process steps such as biohydrolysis, bioesterification and fractional distillation. The neutral glycerides of the deodorizer distillates were hydrolyzed byCandida cylindracea lipase. The total fatty acids (initial FFA plus FFA from neutral glycerides) were converted into butyl esters withMucor miehei lipase. The esterified product was then fractionally distilled in a Claisen-vigreux flask. The first fraction, which was collected at 180–230°C at 1.00 mm of Hg for 45 min, contained mainly butyl esters, hydrocarbons, oxidized products and some amount of free fatty acids. The fraction collected at 230–260°C at 1.00 mm Hg for 15 min was rich in tocopherols (about 30%) and sterols (about 36%). The overall recovery of tocopherols and sterols after hydrolysis, esterification and distillation were around 70% and 42%, respectively, of the original content in sunflower oil deodorizer distillate.  相似文献   

12.
Methods were developed for the separation, detection, and quantification of tocopherols and phytosterols by high-performance liquid chromatography with an evaporative light-scattering detector. Four tocopherols— α, β, γ and δ—and four phytosterols—campesterol, β-sitosterol, brassicasterol, and stigmasterol—were analyzed in soybean, sunflower, low-erucic acid rapeseed (LEAR) and corn oils. The use of an evaporative light-scattering detector, in conjunction with modification of methods from the literature to prepare and analyze tocopherols and phytosterols by HPLC, showed consistent results between trials and levels of these minor constituents. Presented at the Annual American Oil Chemists' Society Meeting, May 3–7, 1989, Cincinnati, OH.  相似文献   

13.
Separation of sterols and tocopherols from fatty acids in deodorizer distillate was facilitated through lipase-catalyzed modification of fatty acids in canola, mixed and soya deodorizer distillates. The fatty acid esterification with methanol catalyzed by SP-382 (an immobilized nonspecific lipase) proceeded rapidly, with conversion of fatty acid to methyl ester in 5 h being 96.5, 83.5 and 89.4%, respectively. A model mixture of pure oleic acid and dl-α-tocopherol was used to study any potential side reactions that may lower the tocopherol content during the esterification reaction. Under the conditions employed, the loss of tocopherol was less than 5%. Simple vacuum distillation (1–2 mm Hg) was employed to remove the volatile fraction (methyl esters of fatty acids, some fatty acids and other volatiles) of the esterified deodorizer distillate, leaving behind sterols, sterol esters and tocopherols. Sterols and tocopherols were almost completely retained in the residue fraction with recoveries in the range of 95%. Overall recoveries of sterols and tocopherols after esterification and distillation were over 90% for all the deodorizer distillate samples.  相似文献   

14.
Plant seed oils, including soybean seed oil, represent the major source of naturally derived tocopherols, the antioxidant molecules that act as free radical quenchers preventing lipid peroxidation in biological systems and vegetable oil products. All four isomers of tocopherols, i.e. α, β, γ, δ tocopherols that exist in nature are found in soybean seeds. The biological activity and the contribution of these isomers in improving the oxidative stability of vegetable oil are in reverse order. Because of the nutritive value and the importance for oil stability, enhancement of tocopherol content, through breeding programs, in soybean seeds has become a new and an important objective. Genotypic variability, which is the basis of every breeding program, is scarcely reported for tocopherol content and profile in soybean seeds. In the present investigation, the tocopherol content and profile in seed samples of 66 genotypes of Indian soybean were determined. The ratios observed between the lowest and the highest values for α, β, γ, δ, total tocopherol content were 1:13.6, 1:10.4, 1:7.5, 1:9.1, 1:7.9, respectively. The mean contents for α, β, γ, δ and total tocopherols were 269, 40, 855, 241 and 1,405 μg/g of oil, respectively. Total tocopherol content was the highest in ‘Co Soya2’ followed by ‘Ankur’. Concentration of α-tocopherol was the highest (27%) in ‘Ankur’ followed by ‘MACS124’ (26%) whereas gamma tocopherol concentration was the highest (69%) in ‘VLS1’ and ‘PK327’ followed by ‘MACS13’ (67%). In view of the fact that levels of unsaturated fatty acids, apart from tocopherols, also determine the oxidative stability of vegetable oils, the relationship of four isomers of tocopherols with each other as well as with different unsaturated fatty acids and oil content was also investigated in the present study. All the four isomers of tocopherols exhibited highly significant correlations with each other (p < 0.001) whereas γ-tocopherol and total tocopherol content showed a significant relationship with linoleic acid (p < 0.05).  相似文献   

15.
Minor constituents of vegetable oils during industrial processing   总被引:6,自引:10,他引:6  
We report the effects of individual steps of industrial refining, carried out in Brazil, on the alteration of selected minor constituents of oils, such as corn, soybean, and rapeseed oils. Total sterols, determined by capillary gas chromatography (GC), decreased by 18–36% in the fully refined oils, compared with the crude oils. The total steradienes, dehydration products of sterols, were determinedvia a simple clean-up on a short silica gel column, followed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The level of steradienes, normally not present in crude oils, increased after each refining step, especially after deodorization. Thus, the content of steradienes increased after deodorization by about 15- to 20-fold in corn and soybean oils, and by about 2-fold in rapeseed oil. The total steryl esters were also determinedvia clean-up on a short silica gel column, followed by HPLC with evaporative light scattering mass detection. A minor decrease in the level of steryl esters was observed after complete refining. The individual tocopherols and tocotrienols were determined by HPLC with a fluorescence detector. The level of total tocopherols and tocotrienols decreased by about 2-fold after complete refining of corn oil and by about 1.5-fold in soybean and rapeseed oils. In all three cases, maximum reduction of tocopherols was observed after the deodorization step. The level of polymeric glycerides, determinedvia clean-up on a short silica gel column followed by size-exclusion HPLC, increased to some extent (0.4–1%) during refining. The level oftrans fatty acids, determined by capillary GC, also increased to a substantial extent (1–4%) after refining. Part of doctoral thesis of Roseli Ap. Ferrari to be submitted to Faculdade de Engenharia de Alimentos, Universidade de Campinas, Campinas, Brazil.  相似文献   

16.
Oxidative stabilities of crude soybean oils obtained by different extraction solvents such as hexane, water and Folch's solvent (mixture of two volumes of chloroform and one volume of methanol) were determined by gas chromatographic analyses of headspace and peroxide value of oil samples. For the determination of oxidative stability of oil samples, total volatile compounds formation, molecular oxygen disappearance in the headspace and peroxide value of oil samples were measured. Iodine value (133–136), saponification value (195–198), unsaponifiable matters (0.3–0.4%), iron (0.6 ppm), sterols content (2,400–2,590 ppm), tocopherols content (1,250–1,520 ppm) and fatty acid composition of crude oils obtained by different solvent extraction were not significantly different. Acid value of Folch-extracted oil was the highest as 1.3, whereas those of hexane-and aqueous-extracted oils were 0.5 and 0.4, respectively. Crude soybean oil extracted by Folch's method was found to contain the most phosphorus, while hexane- and aqueous-extracted oils contained similar amounts of phosphorous. Crude soybean oil obtained by Folch extraction was most stable in oil oxidation, and oxidative stabilities of oils obtained by hexane and aqueous extraction, which were significantly much less stable than Folch-extracted oil, were not significantly different during ten weeks storage.  相似文献   

17.
The processes of degumming, alkali refining, bleaching and deodorization removed 99.8% phospholipids, 90.7% iron, 100% chlorophyll, 97.3% free fatty acids and 31.8% tocopherols from crude soybean oil. The correlation coefficient between the removals of phosphorus and iron in soybean oil during processing was r = 0.99. The relative ratios of α-, β -, γ- and δ-tocopherols in crude oil, degummed oil, refined oil, bleached oil and deodorized soybean oil were almost constant, γ- and δ -tocopherols represented more than 94% of tocopherols in soybean oil. The order of oxidation stability of oil is crude > deodorized > degummed > refined > bleached oil.  相似文献   

18.
Controlled environment studies show α-tocopherol (αT) in soybean seeds increases several fold as a result of warmer temperature or drought during seed maturation, but total tocopherols (Ttot) stay approximately constant. To determine if natural variation in weather or climate affect T under field conditions, we analyzed soybean seeds grown at several locations in Maryland between 1999 and 2002. Weather was relatively normal during 1999–2001, whereas warmer temperatures and extreme drought were characteristic of 2002. Comparing 18 lines, there were small but significant differences in Ttot as well as 2- to 3-fold differences in αT during 1999–2001. Seeds from locations on the Eastern Shore of Maryland (full season crops) had higher absolute and relative levels of αT compared to seeds from a (cooler) central Maryland location or seeds from a later planting (double crop) on the Eastern Shore. Effects of location or planting date were small compared to that of genetic line when considering the normal years 1999–2001. In 2002, however, several fold increases in αT/Ttot were observed in Maturity Group III and IV seeds, especially from full season crops grown at two locations on the Eastern Shore of Maryland. We conclude weather and climate are significant factors affecting soybean seed T content.  相似文献   

19.
Enzymatic esterification and supercritical fluid extraction was used to produce phytosterol esters from soybean oil deodorizer distillates. The raw material was first subjected to a two‐step enzymatic reaction; the product obtained mainly comprised fatty acid ethyl esters, tocopherols and phytosterol esters, together with minor amounts of squalene, free fatty acids, free sterols and triacylglycerols. The phytosterol esters were then purified from this mixture using supercritical carbon dioxide. Experimental extractions were carried out in an isothermal countercurrent column (without reflux), with pressures ranging from 200 to 280 bar, temperatures of 45–55 °C and solvent‐to‐feed ratios from 15 to 35 kg/kg. Using these extraction conditions, the fatty acid esters were completely extracted and, thus, the fractionation of tocopherols and phytosterol esters was studied. At 250 bar, 55 °C and a solvent‐to‐feed ratio of 35, the phytosterol esters were concentrated in the raffinate up to 82.4 wt‐% with satisfactory yield (72%).  相似文献   

20.
Glycerolysis of soybean oil was conducted in a supercritical carbon dioxide (SC-CO2) atmosphere to produce monoglycerides (MG) in a stirred autoclave at 150–250°C, over a pressure range of 20.7–62.1 MPa, at glycerol/oil molar ratios between 15–25, and water concentrations of 0–8% (wt% of glycerol). MG, di-, triglyceride, and free fatty acid (FFA) composition of the reaction mixture as a function of time was analyzed by supercritical fluid chromatography. Glycerolysis did not occur at 150°C but proceeded to a limited extent at 200°C within 4 h reaction time; however, it did proceed rapidly at 250°C. At 250°C, MG formation decreased significantly (P<0.05) with pressure and increased with glycerol/oil ratio and water concentration. A maximum MG content of 49.2% was achieved at 250°C, 20.7 MPa, a glycerol/oil ratio of 25 and 4% water after 4 h. These conditions also resulted in the formation of 14% FFA. Conversions of other oils (peanut, corn, canola, and cottonseed) were also attempted. Soybean and cottonseed oil yielded the highest and lowest conversion to MG, respectively. Conducting this industrially important reaction in SC-CO2 atmosphere offered numerous advantages, compared to conventional alkalicatalyzed glycerolysis, including elimination of the alkali catalyst, production of a lighter color and less odor, and ease of separation of the CO2 from the reaction products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号