首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 579 毫秒
1.
埕海一区大位移水平井摩阻扭矩研究与应用   总被引:3,自引:0,他引:3  
大港油田埕海一区庄海8井区按照“海油陆采”模式采用大位移井技术进行开发,针对大位移井钻井难点,开展摩阻扭矩预测技术研究。根据钻成的水垂比为3.92的庄海8Nm-H3大位移水平井实钻摩阻扭矩数据,通过建立大位移井摩阻扭矩预测模型,确定了现有钻井液体系和性能条件下的摩阻系数。分析了减摩工具、钻井液体系、井眼轨迹、钻柱结构及井眼净化等对摩阻扭矩的影响,使用与庄海8Nm-H3井类似的井身结构、钻具组合及钻井液体系及性能,采用相同的管内和裸眼摩阻系数,计算了水垂比为3.1、3.5、4、4.5、5的大位移井摩阻扭矩,结果表明,在大港油田埕海一区能够完成水垂比为5的大位移水平井施工。  相似文献   

2.
金平1浅层大位移水平井钻井技术   总被引:13,自引:3,他引:10  
金平1井是胜利油田第一口特浅大位移水平井,创全国陆地油田水平井位垂比最高纪录(住垂比2.803:1).该井为预探井,钻进地层埋深浅,欠压实程度高,地层不稳定,上部地层松软,地层造斜能力差.通过优化井身结构设计、钻具组合与钻井参数,保证了井眼轨迹平滑;利用摩阻扭矩计算软件进行实时摩阻扭矩分析,采用短起下钻、分段循环等手段有效清除了岩屑床,保障了井眼畅通和井下安全;采用乳化润滑防塌钻井液体系,根据地层特点合理调整钻井液性能,满足了全井井壁稳定、携岩和润滑的要求.全井克服了浅地层造斜稳斜控制困难,大井眼、长水平段岩屑携带困难,起下钻摩阻大,旋转钻进扭矩大等一系列技术难题,安全钻至井深2 218 m,水平位移1 636.49 m,垂深592.90 m.详细介绍了金平1井的现场施工情况.  相似文献   

3.
为了解决卫68-FP1 井水平段井眼尺寸小、井下摩阻大、井眼轨迹不易控制等问题,在计算不同井眼曲率下摩阻、扭矩的基础上,结合邻井实钻资料,优化了井眼轨道设计,以降低摩阻和扭矩;根据非常规水平井的实钻经验,选用"小角度螺杆+欠尺寸双稳定器"钻具组合,并对螺杆钻具的弯角和稳定器外径进行了优化,以提高井眼轨迹控制精度;选用合理密度的油基钻井液,以保证水平段的井壁稳定性;采用C1+伽马地质导向技术,以提高油层钻遇率;制定了安全钻进技术措施,以确保钻井安全。实钻结果表明:合理的井眼轨道设计能够有效降低钻进摩阻;"小角度螺杆+欠尺寸双稳定器"钻具组合能精确控制井眼轨迹,并能提高旋转钻进比例;C1+伽马地质导向技术能确保水平段始终在油层穿行。卫 68-FP1 井的顺利完成,可为泥页岩油藏水平井的钻井施工提供借鉴。   相似文献   

4.
用旋转导向钻井系统钻大位移井   总被引:25,自引:4,他引:21  
在用滑动导向系统钻大位移井时,随着位移及井深的不断增大,由于上部钻柱不旋转,会引起摩阻和扭矩过大、方位漂移失控、井眼清洗不良等问题。计算和实践表明,用滑动导向系统进行钻井时,大位移井的极限延伸能力受到了限制。文中对用旋转导向系统钻大位移井进行了方案性研究,设计了相应的可遥控和井下自动控制的旋转导向工具RSDS,并对旋转导向的机理进行了理论研究。所设计的旋转导向工具以钻井液为动力,充分利用了钻井液的冷却作用,具有较好的工作可靠性,结构简单。用旋转导向系统RSDS进行大位移井钻井,可望相当准确的控制井眼轨迹,大幅度减少钻柱所受的摩阻和扭矩,显著改善井眼的清洁状况。  相似文献   

5.
南堡13-1706井是一口大位移大斜度深井,四开井段存在井眼净化困难、摩阻扭矩大、井壁失稳、井下漏失、井底高温等问题。研究问题产生的机理,提出运用井眼净化和井壁稳定技术的相应对策,在现场施工中优化钻井液配方、优选流变参数,使钻井液具有良好的携岩性、润滑性、井壁稳定性和高温稳定性。在实钻中,配合合理的钻井工程措施,顺利完成了该井四开钻进及完井施工。  相似文献   

6.
古巴油气井钻井过程中常见问题及处理方案   总被引:2,自引:0,他引:2  
由于古巴地层复杂,井型基本都是大位移水平井,油气井开发钻进过程难度较大。受地质条件影响,古巴大位移水平井的开发在井壁稳定、井眼清洁、管柱受力和钻井液的处理方面都存在其特殊性。以开发GUA-101井为例,针对这些问题进行逐一分析,并提出了解决方案。该井断层裂隙多,漏失严重,井壁容易掉块坍塌,岩屑在自重作用下下沉到下井壁,形成严重的堆积,堵塞井眼,造成恶性卡钻。管柱的摩阻扭矩大,重晶石沉淀严重。在施工过程中,通过及时检查并调整钻井液性能;使用短起下钻,控制速度;增大钻头水眼,进一步提高钻井液排量;合理地使用钻具,采取旋转井内钻具等措施圆满解决了以上问题,为以后开发相同类型的油井提供了实践基础和技术参考。  相似文献   

7.
张海502FH井为一口大位移分支水平井,该井井底水平位移、水平段长度均创造了目前国内陆地钻井的最大纪录。该井钻井过程中存在φ244.5mm技术套管内开窗难度大、摩阻扭矩预测及井眼清洁困难、钻井参数及欠尺寸稳定器的优选困难、完井作业难度大等技术难题,从套管开窗、井眼轨迹控制、钻井过程中摩阻扭矩预测、倒划眼起钻井眼清洁、钻井液及完井技术等方面,详细讨论了主要技术、先进工具的应用和应用效果。该井的成功为今后钻类似井积累了经验。  相似文献   

8.
井眼净化是水平井安全、快速钻进中一个非常关键的问题,也是制约机械钻速的一个重要因素。为准确了解高效钻井施工中的井眼净化问题,国外钻井公司通常运用摩阻及扭矩分析软件,计算、输出不同摩阻系数下从初始钻进点到完钻点的上提钩载、下放钩载、旋转钩载、启动扭矩、空转扭矩、钻进扭矩等理论参数曲线,与钻进中实际大钩载荷和扭矩曲线进行趋势对比,如果实时曲线的趋势与理论曲线相同,且动态摩阻系数小于0.4,则表明井眼净化良好。这种方法能够较好地显示井眼净化状况,实现井眼净化的有效实时监控,为钻进参数的选取提供依据。文章介绍了运用摩阻扭矩分析功能实时监测井眼净化的具体作法,并通过一口实例井阐述了运用这种实时监控的钻井效果。应用实例表明,在良好的井眼净化前提下,一趟钻完成了水平段长3 020 m的?155.6 mm小井眼水平井的钻井施工作业,无任何井下复杂和非生产时间,总共耗时8 d完成钻探,本井平均机械钻速达到29.3 m/h,钻井速度和钻井时效提高到了极致,获得了极好的技术经济效益。该方法可以为国内钻井工程师和定向井工程师在钻井作业中提供参考和借鉴。  相似文献   

9.
南海流花超大位移井摩阻/扭矩及导向钻井分析   总被引:1,自引:0,他引:1  
大位移井的井眼轨迹比较复杂,为准确地计算实钻井眼中管柱的摩阻/扭矩分布,采用了三维摩阻/扭矩计算模型和软件。文中给出了南海流花油田已钻5口大位移井的钻井与完井数据,并跟踪第5口超大位移井(C1ERW 5井),应用自主研发的摩阻/扭矩数值分析软件,对钻井及下套管作业过程中的摩阻/扭矩分布进行了预测分析,计算结果与实测数据吻合良好。同时,针对流花超大位移井所使用的带PowerDrive系统的底部钻具组合,定量探讨了旋转导向钻井系统的力学特性,并分析了其影响参数导向控制力、钻压、PD翼肋位置对钻头侧向力的影响,计算分析结果表明,通过调整PD翼肋导向控制力的大小和方位,便可有效地控制井眼轨迹。该研究可为后续施工的超大位移井工程提供重要参考。  相似文献   

10.
浅层大位移水平井钻井关键技术分析   总被引:4,自引:0,他引:4  
高平1井是胜利油田第一口位垂比达到4的大位移水平井。为了最大限度降低和克服井下摩阻扭矩,利用井眼轨道优化设计、下部钻具组合及钻进参数优选、工程保障措施和钻井液性能调控等关键技术,实现了对井眼轨迹的有效控制。所完成的高平1井位垂比达到了4.019 8,水平段长3 462.07 m。结论认为:①造斜率相对较低的单增轨道更适用长水平段水平井井眼轨道优化设计;②优选底部钻具组合、钻进参数和钻头,在特定区域能有效降低长水平段滑动钻进的比例;③水基钻井液在大位移井钻井中拥有较广阔的应用空间。  相似文献   

11.
钻柱摩阻扭矩的实时分析对提高钻井效率、规避钻井卡钻风险具有重要作用,目前摩阻扭矩分析以钻前预测为主,但钻井过程中摩阻扭矩的实时分析尚不成熟。针对当前井底钻压扭矩预测不准、钻柱摩阻系数的确定存在盲目性等问题,提出一种钻柱摩阻扭矩智能实时分析方法。该方法利用神经网络模型实时计算井底钻压扭矩,结合摩阻扭矩刚杆模型采用二分法实时反演摩阻系数,准确分析钻柱受力。考虑到钻柱摩阻系数在一定程度上表征钻柱卡钻趋势,进一步利用该方法对钻井卡钻趋势进行预测。将该方法应用于现场数据,发现某井钻柱摩阻系数在6 000~6 100 m区间整体呈现逐渐增大的趋势,且在6 100 m处附近,钻柱摩阻系数从0.35附近陡增至0.75,变化极为剧烈,说明即将发生卡钻。经过对该井的钻井日志查证,该井在6 100 m处附近蹩停顶驱钻具卡死。说明利用该方法对卡钻趋势进行预测具有良好的效果,便于现场实时调整钻井参数,有效规避卡钻风险,提高钻井效率。  相似文献   

12.
大位移水平井在钻井过程中摩阻大、扭矩大,岩屑易沉积,下套管难度大,循环当量密度(ECD)控制难度大。为提高解决这些问题的精确度,通过将海上平台钻井现场的钻压、扭矩、泵压、转速、排量等数据同步实时传送到陆地服务器,由专业素质扎实的技术人员借助专业软件,精确分析模拟数据,钻井实时辅助决策技术能够快速提供与现场匹配度高的决策信息,有效辅助现场作业克服施工难度。钻井实时辅助决策技术在保证大位移井钻井的安全和高效上起到非常重要的作用。  相似文献   

13.
国外大位移井钻井技术发展现状   总被引:13,自引:0,他引:13  
宋玉玲  李占武 《钻采工艺》1998,21(5):4-8,12
随着定向井,水平井钻井技术的日趋成熟,大位移钻井技术在国外已有很大的发展。本文是对近十年来英,美,俄等国家的有关资料认真研究分析编写而成的,大位移钻井的关键技术是:井身剖面设计,钻柱设计,扭矩和摩阻,井眼稳定技术及井眼清洁技术,完井技术等6个方面,本文将分别给予介绍,并以大庆油田钻头位移井进行可行性分析。  相似文献   

14.
东方1-1气田在垂深为1 350 m左右的大位移水平井钻井过程中,表层乐东组、莺歌海组一段地层极易出泥球;水平段储层莺歌海组二段钻进摩阻扭矩大,且存在压力衰竭,极易发生井漏;储层埋深浅,地层成岩性差,井壁易失稳。针对以上钻井难题,经过多年摸索与实践,在非储层段改变以往钻井液作业模式,探索性地使用海水聚合物体系,保证非储层段泥岩充分水化;在储层段引入纳米可变形封堵剂PF-Greenseal优化无固相钻井液屏蔽暂堵性能,同时配合使用成膜封堵剂PF-LPF及高效润滑剂PF-Greenlube,成功解决了泥球、井漏、摩阻扭矩大、井壁失稳等难题,形成了一套东方1-1气田浅层大位移水平井钻井液作业模式。现场3口调整井应用结果表明,非储层段钻进机械钻速由41~64 m/h提高到85 m/h左右,同时可降低50%钻井液成本;储层段井壁稳定,井径扩大率低于3%,扭矩低,储层保护效果好,3口井测试表皮因数接近0。研究结果可为类似油气田钻井作业提供钻井液技术参考。  相似文献   

15.
��λ�ƾ�����“ճ��-����”�����о�   总被引:3,自引:1,他引:2  
韩春杰  阎铁 《天然气工业》2004,24(11):58-60
文章分析研究了大位移井钻井过程中对钻具破坏很强的一种扭转振动:“粘滞—滑动”,这种振动在大位移井钻井过程中发生的概率比较大,表现为或停或转的状态,转动的瞬间钻头以很大的速度冲出,引起钻头与地层、钻柱与井壁强烈碰撞,因此引起钻具失效。通过建立大位移井钻柱的等效扭转摆模型,分析了在钻头与地层扭矩及钻柱与井壁间摩阻扭矩作用下钻柱的动态行为,给出了钻柱所受摩阻力与钻柱动态位移之间的函数关系。分析了钻柱“粘滞—滑动”振动所遵循的物理规律,获得了大位移井“粘滞—滑动”共振频率的分布。结果表明:大位移井的“粘滞—滑动”现象表现为低频反应。根据“粘滞—滑动”共振所满足的条件,通过调整钻井参数可以避免“粘滞—滑动”现象的发生;扭转负反馈对“粘滞—滑动”现象有一定的阻碍作用。该问题的分析结果具有较高的理论价值和实际意义,对大位移井钻进中如何减少钻具失效问题提供力学依据。  相似文献   

16.
金平1井浅层长水平段水平井钻井技术   总被引:7,自引:1,他引:6  
长水平段水平井可增加油气藏的裸露面积,显著提高边际油气藏的综合开发效益。为了检验前期研究成果,进一步丰富完善长水平段水平井钻井技术,决定部署一口阶段试验井——金平1 井。在剖析该井施工难点的基础上,重点阐述了其井身结构与井眼轨道优化设计、大井眼浅层定向、井眼轨迹控制、钻具组合优化、安全钻进等关键技术,通过对水平段摩阻扭矩的理论与实际分析对比,保障了现场施工的顺利进行。该井的成功完钻,积累了大位移及长水平段水平井钻井技术经验,并创造了胜利油田3 项技术指标,位垂比达到了2.803,是当时国内陆上油田位垂比最大的一口井。  相似文献   

17.
钻柱拉力扭矩模型在侧钻水平井中的应用   总被引:3,自引:0,他引:3  
在油气井作业中,由于钻柱和井壁接触所产生的轴向阻力和扭矩损失对钻井和修井作业均有很大的影响,甚至成为作业成败的关键。钻柱的拉力和扭矩分析是水平井和大位移井设计和施工的重要内容。为此,介绍了钻柱拉力扭矩分析的数学模型、钻柱稳定性判别方法和屈曲后的附加压力和附加应力的钻柱强度校核方法。对钻进过程中的G104-5CP12侧钻水平井钻柱的各种运动状态进行了力学分析。计算表明,在正常施工过程中钻柱一直处于稳定状态,具有比较大的安全系数。  相似文献   

18.
大位移井井眼清洁监测技术   总被引:1,自引:1,他引:0  
大位移井因其大斜度段和水平段长,容易造成岩屑在环空中滞留或形成岩屑床。研究表明,利用环空压力变化可以有效监测井眼清洁程度。在钻头附近安装环空压力传感器,能够精确测量环空压力,但成本高,故障率高,大范围的应用受到限制。介绍了一种方法,可根据地面立压值来计算出环空压力,监测井眼不清洁的程度。其原理是:环空压力等于立管压力减去钻柱、井下动力钻具、MWD与钻头循环压降。井下动力钻具、MWD与钻头循环压降的计算是在假定井眼为清洁的情况下,通过立压、环空循环压降、钻柱与钻头压降等计算后获得。之后,将环空压力转换成循环钻井液当量密度,据此可以监测井眼清洁程度,为大位移井安全钻井提供了一定的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号