首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Samples of Al2O3–TiO2 coatings are fabricated by the flame spraying of a flexible cord. The influence of process parameters and composition of the sprayed material on the structure, composition, and mechanical properties of coatings is investigated. It is shown that an increase in the spraying distance and feed rate of the sprayed material leads to a decrease in their density. An increase in the concentration of the low-melting TiO2 component predetermines a decrease in the coating porosity and has no significant effect on the coating hardness. Being subjected to measuring scratching, Al2O3–TiO2 flame coatings formed with minimal porosity (Π = 3.2%) are characterized by cohesion fracture behavior and no substrate opening under an indenter load of up to 90 N. The friction factor of coatings under study varies from 0.2 to 0.78 after 2800 counterbody revolutions (44 m of the friction path). This is associated with the accumulation of fatigue cracks in the coating material and its subsequent cohesive fracture by the formation of large fragments serving as an abrasive.  相似文献   

2.
Correlation of microstructure and wear resistance of Al2O3-TiO2 coatings plasma sprayed with nanopowders was investigated in this study. Four kinds of nanostructured Al2O3-13 wt pct TiO2 coatings were fabricated by varying plasma-spraying parameters and were compared with an Al2O3-13 wt pct TiO2 coating fabricated with conventional powders. The nanostructured coatings showed a bimodal microstructure composed of fully melted regions of γ-Al2O3 and partially melted regions, while the conventional coating mostly consisted of fully melted γ-Al2O3, together with some TiO2-rich regions and unmelted Al2O3 powders. The wear test results revealed that the wear resistance of the nanostructured coatings was 3 or 4 times better than that of the conventional coating, because the preferential delamination seriously occurred along TiO2-rich regions in the conventional coating. In the nanostructured coatings, TiO2 was homogeneously dispersed inside splats and around, thereby leading to higher splat bonding strength and to better wear resistance over the conventional coating.  相似文献   

3.
This paper reports the wear characteristics of the ceramic coatings made with Al2O3 and also with SiC which were performed using atmospheric plasma spraying technique on the Ti-6Al-4V biomedical alloy with the aim of improving their tribological behavior. The wear behavior of the coatings was evaluated using reciprocatory wear tester with coated substrate as the flat and alumina ball as a friction partner in simulated body fluid (Hank’s solution) environment. The microstructure and phase composition of the ceramic powders and as-sprayed coatings have been characterized using scanning electron microscope and X-ray diffractometer. Porosity, microhardness, adhesion strength and roughness of the coatings were measured as they have a bearing on wear and friction behavior. The results indicate that plasma sprayed Al2O3 coating exhibits higher wear resistance compared to that of plasma sprayed SiC coating. The higher wear resistance of Al2O3 coating is attributed to the improved melting and spreading of the alumina particles onto the substrate yielding increasingly bonded splats, resulting in compact and dense microstructure with lower porosity and higher microhardness.  相似文献   

4.
The effect of Al2O3 concentration on the density and structure of CaO-SiO2-Al2O3 slag was investigated at multiple Al2O3 mole percentages and at a fixed CaO/SiO2 ratio of 1. The experiments were conducted in the temperature range of 2154 K to 2423 K (1881 °C to 2150 °C) using the aerodynamic levitation technique. In order to understand the relationship between density and structure, structural analysis of the silicate melts was carried out using Raman spectroscopy. The density of each slag sample investigated in this study decreased linearly with increasing temperature. When the Al2O3 content was less than 15 mole pct, density decreased with increasing Al2O3 content due to the coupling of Si (Al), whereas above 20 mole pct density of the slag increased due to the role of Al3+ ion as a network modifier.  相似文献   

5.
In this article, a novel method has been used to prepare a copper matrix nanocomposite containing Cu-10 wt pct Cr-10 wt pct Al2O3 by heat treatment of the mechanically activated Cu, Al, and Cr2O3 powder mixture. Structural evolutions were investigated using the X-ray diffraction (XRD) technique. The microstructure of samples was examined using scanning electron microscopy (SEM). It was found that during the milling process, Cu(Al) solid solution and Cu9Al4 phase were formed as the intermediate products, and therefore, Al activity was decreased. Hence, the reduction of Cr2O3 with Al was prevented during the ball milling stage. Further heat treatment carried out under argon atmosphere at 900 °C for 8 hours resulted in completion of Cr2O3 reduction by Al.  相似文献   

6.
Phase-equilibrium data and liquidus isotherms for the system “MnO”-CaO-(Al2O3+SiO2) at silicomanganese alloy saturation have been determined in the temperature range of 1373 to 1723 K. The results are presented in the form of the pseudoternary sections “MnO”-CaO-(Al2O3+SiO2) with Al2O3/SiO2 weight ratios of 0.55 and 0.65. The primary-phase fields have been identified in this range of conditions.  相似文献   

7.
A thermodynamic equilibrium between the Fe-16Cr melts and the CaO-Al2O3-MgO slags at 1823 K as well as the morphology of inclusions was investigated to understand the formation behavior of the MgO-Al2O3 spinel-type inclusions in ferritic stainless steel. The calculated and observed activities of magnesium in Fe-16Cr melts are qualitatively in good agreement with each other, while those of aluminum in steel melts exhibit some discrepancies with scatters. In the composition of molten steel investigated in this study, the log (X MgO/X Al 2O3) of the inclusions linearly increases by increasing the log [a Mg/a Al 2 ·a O 2 ] with the slope close to unity. In addition, the relationship between the log (X MgO/X Al 2O3) of the inclusions and the log (a MgO/a Al 2O3) of the slags exhibits the linear correlation with the slope close to unity. The compositions of the inclusions are relatively close to those of the slags, viz. the MgO-rich magnesia-spinel solid solutions were formed in the steel melts equilibrated with the highly basic slags saturated by CaO or MgO. The spinel inclusions nearly saturated by MgO were observed in the steel melts equilibrated with the slags doubly saturated by MgO and MgAl2O4. The spinel and the Al2O3-rich alumina-spinel solid solutions were formed in the steel melts equilibrated with the slags saturated by MgAl2O4 and MgAl2O4-CaAl2O4 phases, respectively. The apparent modification reaction of MgO to the magnesium aluminate inclusions in steel melts equilibrated with the highly basic slags would be constituted by the following reaction steps: (1) diffusion of aluminum from bulk to the metal/MgO interface, (2) oxidation of the aluminum to the Al3+ ions at the metal/intermediate layer interface, (3) diffusion of Al3+ ions and electrons through the intermediate layer, and (4) magnesium aluminate (MgAl2O4 spinel, for example) formation by the ionic reaction.  相似文献   

8.
Understanding the viscous behavior of copper smelting slags is essential in increasing the process efficiency and obtaining the discrete separation between the matte and the slag. The viscosity of the FeOt-SiO2-Al2O3 copper smelting slags was measured in the current study using the rotating spindle method. The viscosity at a fixed Al2O3 concentration decreased with increasing Fe/SiO2 ratio because of the depolymerization of the molten slag by the network-modifying free oxygen ions (O2−) supplied by FeO. The Fourier transform infrared (FTIR) analyses of the slag samples with increasing Fe/SiO2 ratio revealed that the amount of large silicate sheets decreased, whereas the amount of simpler silicate structures increased. Al2O3 additions to the ternary FeOt-SiO2-Al2O3 slag system at a fixed Fe/SiO2 ratio showed a characteristic V-shaped pattern, where initial additions decreased the viscosity, reached a minimum, and increased subsequently with higher Al2O3 content. The effect of Al2O3 was considered to be related to the amphoteric behavior of Al2O3, where Al2O3 initially behaves as a basic oxide and changes to an acidic oxide with variation in slag composition. Furthermore, Al2O3 additions also resulted in the high temperature phase change between fayalite/hercynite and the modification of the liquidus temperature with Al2O3 additions affecting the viscosity of the copper smelting slag.  相似文献   

9.
10.
Nanopowders of ZrO2–Y2O3–CeO2 and ZrO2–Y2O3–CeO2–Al2O3 systems are investigated with the purpose of studying the influence of pH of the dispersed medium on the solubility of nanopowder particles of a complex composition in an aqueous medium after membrane filtration and centrifugation to further prepare the stable dispersions necessary for toxicological investigations of nanoparticles. Concentrations of elements remaining in a supernatant after the sample preparation, which includes membrane filtration and centrifugation, are measured by inductively coupled plasma optical emission spectroscopy. It is established that that the largest aggregative stability of the nanopowder dispersion without the Al2O3 additive corresponds to the optimal range of pH 5.5–9.5, while with the Al2O3 additive, it is region pH 7.0. The results evidence that, when dispersing these powders, the hydrosol of yttrium oxyhydroxide, which is dissolved at pH < 6.0, is formed. When dissolving in water of the powder with the Al2O3 additive in the neutral medium, aluminum hydroxide is formed; in the acidic medium (pH < 6), it is replaced by main soluble aluminum salts; and in the alkali medium (pH > 7), amphoteric aluminum hydroxide is dissolved because of the formation of aluminates.  相似文献   

11.
Different amounts of LiF were added to an Al2O3-4 pct Nb2O5 basic ceramic, as sintering agent. Improved new ceramics were obtained with LiF concentrations varying from 0.25 to 1.50 wt pct and three sintering temperatures of 1573 K, 1623 K, and 1673 K (1300 °C, 1350 °C, and 1400 °C). The addition of 0.5 wt pct LiF yielded the highest densification, 94 pct of the theoretical density, in association with a sintering temperature of 1673 K (1400 °C). Based on X-ray diffraction (XRD), this improvement was due not only to the presence of transformed phases, more precisely Nb3O7F, but also to the absence of LiAl5O8. The preferential interaction of LiF with Nb2O5, instead of Al2O3, contributed to increase the alumina sintering ability by liquid phase formation. Scanning electron microscopy (SEM) results revealed well-connected grains and isolated pores, whereas the chemical composition analysis by energy dispersive energy (EDX) indicated a preferential interaction of fluorine with niobium, in agreement with the results of XRD. It was also observed from thermal analysis that the polyethylene glycol binder burnout temperature increased for all LiF concentrations. This may be related to the formation of hydrogen bridge bonds.  相似文献   

12.
The recycling of packaging materials such as low density polyethylene (LDPE) into useful product is one of the challenging tasks. Since waste LDPE has some issues like low mechanical strength and thermal degradation; some studies have been reported in recent past to improve these properties with ceramic/metallic reinforcements. In this work reusability of LDPE has been ascertained as functionally graded material (FGM) through aluminum (Al) matrix based investment casting (IC). This study highlights the use of SiC and Al2O3 as reinforcement in LDPE for IC applications as a novel method for development of FGM. The master patterns for IC were prepared from reinforced LDPE based feed stock filament (prepared on conventional screw extruder) on open source fused deposition modelling setup. The in-house prepared filament wire was subjected to mechanical and thermal testing to ensure recyclability and stability of the material. The photo micrographs and SEM images were collected to ensure the dispersion of SiC and Al2O3 reinforcements in Al based FGM.  相似文献   

13.
A magnesium-based composite with 1.1 volume percentage of nanosized Al2O3 particulates reinforcement was fabricated using an innovative disintegrated melt deposition technique followed by hot extrusion. Al2O3 particulates with an equivalent size of 50 nm were used as reinforcement. Microstructural characterization of the materials revealed grain refinement of magnesium matrix due to incorporation, retention, and uniform distribution of reinforcement. Physical properties characterization revealed that the addition of nano-Al2O3 particulates as reinforcement improves the dimensional stability of pure magnesium. Mechanical properties characterization revealed that the presence of nano-Al2O3 particulates as reinforcement leads to a significant increase in microhardness, dynamic elastic modulus, 0.2 pct yield strength (YS), ultimate tensile strength (UTS), and ductility of pure magnesium. The results revealed that the combined tensile properties of these materials are superior when compared to Mg reinforced with much higher volume percentage of SiC. An attempt is made in the present study to correlate the effect of nano-Al2O3 particulates as reinforcement with the microstructural, physical, and mechanical properties of magnesium.  相似文献   

14.
In the present work, the relationship between the microscopic structure and macroscopic thermophysical properties in a basic CaO-SiO2-MgO-Al2O3 quaternary system was identified using Fourier transformation infrared, Raman and 27Al magic angular spinning nuclear magnetic resonance (MAS-NMR) techniques. The Raman spectra quantitatively proved that with increasing Al2O3 content, the concentrations of the symmetric units of Q0(Si) and Q2(Si) decreased, while those of the asymmetric units of Q1(Si) and Q3(Si) increased; consequently, the degree of polymerization of the networks increased, which resulted in an increase in slag viscosity. The 27Al MAS-NMR spectra demonstrated that three structural units of Al atoms, namely, AlO4, AlO5, and AlO6, mainly existed in the networks. With increasing Al2O3 content, the concentration of AlO4 slightly decreased, while those of AlO5 and AlO6 increased; overall, Al2O3 acted as a network former in the present system. The increasing Al2O3 content led to additional AlO6 and Si-NBO-Ca-NBO-Al frameworks, which replaced Si-NBO-Ca-NBO-Si in the networks (NBO: non-bridging oxygen) and induced a change in the primarily precipitated crystalline phase from Ca2MgSi2O7 and Ca2Al2SiO7 to MgAlO4.  相似文献   

15.
In an attempt to systematize the knowledge of the heat conduction of liquid silicates, the effective thermal diffusivities of some synthetic slags containing CaO, Al2O3, and SiO2 have been measured, using the three-layer laser-flash method on a differential scheme in the temperature range of 1625 to 1825 K. The effective thermal diffusivities measured, which are a combination of the phononic and photonic heat-transfer mechanisms, were found to increase with increasing temperature for all the presently investigated slags. The slag compositions were chosen in such a way that the changes in the effective thermal diffusivities would reflect the changes in the structure of the slags. It was observed that, at a CaO/Al2O3 molar ratio of 4.42, an increase of the SiO2 content had very little effect on the effective thermal diffusivity values. On the other hand, addition of SiO2 to a slag with the CaO/Al2O3 molar ratio of 2.59 resulted in a significant increase in the effective thermal diffusivity. The addition of Al2O3 to slags with a constant CaO/SiO2 molar ratio resulted in a marked increase in the effective thermal diffusivity. Both these trends indicate that there might be an influence of the network formation in silicate melts on the effective thermal diffusivity.  相似文献   

16.
In-situ Al2O3/TiAl3 intermetallic matrix composites were fabricated via squeeze casting of TiO2/A356 composites heated in the temperature range from 700 °C to 780 °C for 2 hours. The phase transformation in TiO2/A356 composites employing various heat-treatment temperatures (700 °C to 780 °C) was studied by means of differential thermal analysis (DTA), microhardness, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X-ray diffraction (XRD). From DTA, two exothermic peaks from 600 °C to 750 °C were found in the TiO2/A356 composites. The XRD showed that Al2O3 and TiAl3 were the primary products after heat treatment of the TiO2/A356 composite. The fabrication of in-situ Al2O3/TiAl3 composites required 33 vol pct TiO2 in Al and heat treatment in the range from 750 °C to 780 °C. The hardness (HV) of the in-situ Al2O3/TiAl3 composites (1000 HV) was superior to that of nonreacted TiO2/A356 composites (200 HV). However, the bending strength decreased from 685 MPa for TiO2/A356 composites to 250 MPa for Al2O3/TiAl3 composites. It decreased rapidly because pores occurred during the formation of Al2O3 and TiAl3. The activation energy of the formation of Al2O3 and TiAl3 from TiO2 and A356 was determined to be about 286 kJ/mole.  相似文献   

17.
Cu-10Cr-3Ag (wt pct) alloy with nanocrystalline Al2O3 dispersion was prepared by mechanical alloying and consolidated by high pressure sintering at different temperatures. Characterization by X-ray diffraction and scanning electron microscopy or transmission electron microscopy shows the formation of nanocrystalline matrix grains of about 40 nm after 25 hours of milling with nanometric (<20 nm) Al2O3 particles dispersed in it. After consolidation by high pressure sintering (8 GPa at 400 °C to 800 °C), the dispersoids retain their ultrafine size and uniform distribution, while the alloyed matrix undergoes significant grain growth. The hardness and wear resistance of the pellets increase significantly with the addition of nano-Al2O3 particles. The electrical conductivity of the pellets without and with nano-Al2O3 dispersion is about 30 pct IACS (international annealing copper standard) and 25 pct IACS, respectively. Thus, mechanical alloying followed by high pressure sintering seems a potential route for developing nano-Al2O3 dispersed Cu-Cr-Ag alloy for heavy duty electrical contact.  相似文献   

18.
The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448±5 °C and 0.52±0.01 mole fraction ZnO and at 1502±5 °C and 0.71±0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3-SiO2-ZnO system were found to be at 1315±5 °C and 1425±25 °C, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.  相似文献   

19.
The viscosity of CaO-SiO2 (-MgO)-Al2O3 slags was measured to clarify the effects of Al2O3 and MgO on the structure and viscous flow of molten slags at high temperatures. Furthermore, the infrared spectra of the quenched slags were analyzed to understand the structural role of Al2O3 in the polymerization or depolymerization of silicate network. The Al2O3 behaves as an amphoteric oxide with the composition of slags; that is, the alumina behaves as a network former up to about 10 mass pct Al2O3, while it acts as a network modifier, in parts, in the composition greater than 10 mass pct Al2O3. This amphoteric role of Al2O3 in the viscous flow of molten slags at the Newtonian flow region was diminished by the coexistence of MgO. The effect of Al2O3 on the viscosity increase can be understood based on an increase in the degree of polymerization (DOP) by the incorporation of the [AlO4]-tetrahedra into the [SiO4]-tetrahedral units, and this was confirmed by the infrared (IR) spectra of the quenched slags. The influence of alumina on the viscosity decrease can be explained on the basis of a decrease in the DOP by the increase in the relative fraction of the [AlO6]-octahedral units. The relative intensity of the IR bands for the [SiO4]-tetrahedra with low NBO/Si decreased, while that of the IR bands for [SiO4]-tetrahedra with high NBO/Si increased with increasing Al2O3 content greater than the critical point, i.e., about 10 mass pct in the present systems. The variations of the activity coefficient of slag components with composition indirectly supported those of viscosity and structure of the aluminosilicate melts.  相似文献   

20.
Aiming at devising new mold flux for Ce-bearing stainless steel, a fundamental investigation on the effect of Ce2O3 on properties of the CaO-Al2O3-Li2O-Ce2O3 slag was provided by the present work. The results show that adding Ce2O3 could decrease the viscosity of the slag due to its effects on decreasing the polymerization of the slag. The crystalline process was restrained by increasing the content of Ce2O3, and the crystalline phases also can be influenced by the slag structure. The crystalline phases were transferred from LiAlO2 and CaO to LiAlO2 and CaCeAlO4 with the addition of Ce2O3 to the slag, which could be well confirmed by the structure of the unit cell of the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号