首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
This paper examines the results of wind tunnel experiments on models of nabkha, based on those studied in the Hotan River basin. Semi-spherical and conical models of nabkhas were constructed at a ratio of 40:1 in light of the on-site observation. Artificial vegetation of simulated Tamarix spp. was put on top of each model. Parameters of the shape, including height, width, and diameter of vegetated semi-spherical and conical nabkha, were measured in the Hotan River basin. Wind tunnel experiments on the semi-spherical and conical nabkha used clean air devoid of additional sediments at five different wind speeds (6–14 m/s) to study the influence of vegetation on airflow patterns. Results of the experiments indicate that vegetation at the top of the nabkhas enhances the surface roughness of the sand mounds, retards airflow over the sand mounds, reduces airflow energy, eliminates erosional pits occurring on the top surface of non-vegetated sand mounds and enhances the range of influence of the vortex that forms on the leeward slope. Vegetation changes the airflow pattern upwind and downwind of the sand mound and reduces the transport of sand away from the nabkha. This entrapment of sediment by the vegetation plays an important role in sustaining the nabkha landscape of the study area. The existence of vegetation makes fine materials in wind-sand flow to possibly deposit, and promotes nabkha formation. The imitative flow patterns of different morphological nabkhas have also been verified by on-site observation in the river basin. __________ Translated from Journal of Desert Research, 2007, 27(1): 15–19 [译自: 中国沙漠]  相似文献   

2.
Wind is the primary control on the formation of aeolian geomorphology. In this study, we combined wind regime data from automated weather stations in the western and southwestern Tengger Desert of the Inner Mongolia region in China with remote‐sensing data to analyse the relationship between the wind energy environment and aeolian geomorphology. Tengger Desert is one of the main dust storm sources in northwestern China. Therefore, efforts aimed at controlling desertification and dust storm require a deeper understanding of the processes that govern the formation and subsequent evolution of dunes in this area. Wind speed was largest in the northwest (3.3 m/s in the Xiqu station) and smallest in the southeast (1.2 m/s in the Haizitan station). Potential sand transport was also largest in the northwest (195 in the Jiahe station) and smallest in the southeast (33 in the Tumen station). The sand‐driving wind (5.92 m/s) directions were from the NW and SE quadrant across the study area, at >76% of all sand‐driving wind, reaching 99% in the Tumen station. The sand‐driving wind in the NW quadrant reached >48%, and in the SE quadrant, >12% of all sand‐driving wind in all stations. In the study area, sand dunes included crescent, dune networks, transverse, and coppice dunes. Dune crest directions had similar trends from upwind to downwind, at 133° in the middle region, and 124° in the southwestern region. Mean dune spacing changed with dune patterns; the maximum spacing for crescent dunes was 147 m, for dune networks 118 m, and for transverse dunes it was 77 m. The mean crest length was 124 m (maximum) for crescent dunes in the northwest, 121 m for transverse dunes, and 84 m for dune networks. However, because of gullies in the southern region, the mean crest length was only 58 m (least) for the crescent dunes in that area. The defect density ranged from 0.007 to 0.014. The spatial differences in dune patterns reflected the evolution of the dune field, where older dunes had been formed upwind and younger downwind. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Samples were collected from the surfaces of four types of typical dunes in order to identify variations in textural characteristics over their bodies. These dunes are barchan, climbing dune, falling dune, and nabkha. Statistical parameters vary from position to another and show that each dune has its own characteristics. It is well recognized that all the sediments of the studied dunes tend to be finer from borders toward the mid dune. Histograms and bivariate diagrams successfully differentiate between different localities within all studied dunes. The climbing dune shows high uniformity where medium sand represents the mean grain size of 91% of collected samples. Samples from barchan and falling dune show lowest variability in statistical parameter values compared to other dunes. On the other hand, nabkha sediments are more variable and show higher values of average statistical parameters. All studied dunes are coarser than surrounding dunes in regional areas and other comparable dunes. But particularly, the barchan sediments in Kuwait are characterized by larger grain size, better sorting than other comparable dunes in the upwind (Iraq) and downwind (Saudi Arabia) and other parts of the world.  相似文献   

4.
The dynamic characteristics and migration of a pyramid dune   总被引:6,自引:0,他引:6  
The results of wind tunnel experiments and field observations show that when the intersection angle between airflow direction and dune crest (ridge) line is > 30°, a reverse vortex is formed. Because of the convergence of sand streams from the windward and lee slopes at the crest, sand accumulates in the crestal region, causing vertical growth. Nevertheless, studies also show that the common asymmetry of the two slopes of a dune may significantly influence the evolution of arms of a pyramid dune. The migration rates of pyramid dunes are mediated by the interplay of their arms moving transversely and the vertical growth in response to the variations in wind regimes. Comparing the effects of airflow transverse to a given arm with longitudinal airflow, it is indicated that the transverse airflow is more significant in controlling the arms of pyramid dunes. The whole body of the studied pyramid dune, particularly the upper quarter section, migrated SE direction during the monitoring period. The patterns of wind erosion and deposition change alternately with seasonal variations in wind directions. The W, NE and SE sides undergo constant erosion, deposition and both erosion and deposition, respectively. The results of long-term monitoring of a pyramid dune show that southerly winds, resulting from a local circulation, markedly affect the transverse migration of the whole pyramid dune.  相似文献   

5.
The dynamics of star dunes: an example from the Gran Desierto, Mexico   总被引:9,自引:0,他引:9  
N. LANCASTER 《Sedimentology》1989,36(2):273-289
Observations of patterns of erosion and deposition and surface wind velocity and direction on a 40 m high star dune in the Gran Desierto sand sea indicate that interactions between dune form and airflow as winds change direction seasonally play a major role in the formation of this dune type. Such interactions lead to deposition of sand in the central parts of the dune, giving rise to its pyramidal shape, as well as to some extension of the linear arms. The major arms of the dune studied are oriented NE-SW, or transverse to summer SSE and winter NNW winds. An avalanche face up to 10 m high develops during the course of each season. Flow separation at the main crestline gives rise to a wide zone of lee side secondary flow which moves sand along the base of the avalanche face towards the central part of the dune, where it is deposited as wind ripples migrate into zones of locally reduced flow velocity. Reattachment of the separated flow occurs on the lower part of the N or S arms, parallel to the flow. Spring westerly winds move sand obliquely up the S and N arms of the dune and outwards on the E arm. Large scale flow separation and diversion are replaced by the development of strong helical eddies in the immediate lee of the main crestline which move sand along avalanche faces and into zones of lower flow velocity at the end of dune arms. Formation of star dunes in the Gran Desierto follows a sequence in which crescentic dunes migrating into areas of opposed winds first develop a reversing crestal ridge. Convergent leeside secondary flows are developed, which result in the formation of linear elements parallel to each major wind direction and the concentration of sand in the central part of the dune. Examples of star dunes at different stages of their development can be documented.  相似文献   

6.
Pattern formation is a fundamental aspect of self‐organization in fields of bedforms. Time‐series aerial photographs and airborne light detection and ranging show that fully developed, crescentic aeolian dunes at White Sands, New Mexico, interact and the dune pattern organizes in systematically similar ways as wind ripples and subaqueous dunes and ripples. Documented interactions include: (i) merging; (ii) lateral linking; (iii) defect repulsion; (iv) bedform repulsion; (v) off‐centre collision; (vi) defect creation; and (vii) dune splitting. Merging and lateral linking are constructive interactions that give rise to a more organized pattern. Defect creation and bedform splitting are regenerative interactions that push the system to a more disorganized state. Defect/bedform repulsion and off‐centre collision cause significant pattern change, but appear to be neutral in overall pattern development. Measurements of pattern parameters (number of dunes, crest length, defect density, crest spacing and dune height), dune migration rates, and the type and frequency of dune interactions within a 3500 m box transect from the upwind margin to the core of the dune field show that most pattern organization occurs within the upwind field. Upwind dominance by constructive interactions yields to neutral and regenerative interactions in the field centre. This spatial change reflects upwind line source and sediment availability boundary conditions arising from antecedent palaeo‐lake topography. Pattern evolution is most strongly coupled to the pattern parameters of dune spacing and defect density, such that spatially or temporally the frequency of bedform interactions decreases as the dunes become further apart and have fewer defects.  相似文献   

7.
Formerly, sand dune patterns were investigated mostly by aerial and satellite images, but more recently, geomorphometric analysis based on digital elevation models (DEMs) has become an important approach. In this paper, sand dune patterns of the Grand Erg Oriental (Sahara) are studied using the De Ferranti (2014) DEM, which is a blending of SRTM (Shuttle Radar Topography Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and other elevation datasets. In the Grand Erg Oriental, there are four large-scale dune pattern types with gradual transitions between them and with several subtypes, namely P1, consisting of large, branching linear dunes; P2, a complex pattern including small-size and widely spaced star and dome dunes; P3, a network type created mostly from crescentic dunes; and finally, P4, consisting of large and closely spaced star dunes. The largest dunes with 90–100-m mean height can be found in the southern parts of the Grand Erg Oriental, where P1 and P4 patterns dominate, and these areas are also characterised by the most intensive sand accumulation with 25–30-m equivalent sand thickness. In the present study, we use regression analysis to investigate the functional relationships between sand dune characteristics. Further on, we have elaborated a DEM-based method to delineate dunes and calculate sand volumes and dune orientations. Comparing wind rose data and sand dune axis rose diagrams, it is concluded that in some parts of the Grand Erg Oriental, the present dune types and patterns are in agreement with the actual wind regime, but in other cases, the present dune patterns are at least partially the results of former wind regimes.  相似文献   

8.
Wind action is the most dominant agent for erosion and deposition in the vast Western Desert of Egypt. Analysis of wind data from seven meteorological stations distributed along the Western Desert reveals that this desert is characterized by high-energy wind environments along the northern and southern edges and low-energy wind environments throughout the rest of the desert. Accordingly, sand drift potential follows the pattern of wind energy. Maximum sand drift potential was observed at the southern edge (571 vector units, which equals 40 m3/m width/year). Sand drift direction was observed towards the southeast except at the southern part of the desert where the trend of sand movement was towards southwest. The major dune type recognized on satellite images was the simple linear type. Linear dunes are generally associated with bimodal wind regime. Rates of sand drift potential and sand dune migration were greatest at East of Owinate region at the extreme southern part of the desert. Measurements of crescentic sand dune advance from two satellite images reveal a maximum advance rate of about 9 m/year at the southern part of the desert. Dune movement creates potential hazard to the infrastructures in this open desert.  相似文献   

9.
Rapid (10 s) measurements of sediment transport and wind speed on the stoss slope of a transverse dune indicate that the majority of sand transported is associated with fluctuations in wind speed with a periodicity of 5–20 min duration. Increases in the sediment transport rate towards the dune crest are associated with a small degree of flow acceleration. The increase in wind speed is sufficient, however, to greatly increase values of the intermittency index ( γ ), so that the duration of saltation is extended in crestal regions of the dune. The pattern of sediment transport on the stoss slope and, therefore, the locus of areas of erosion and deposition change with the regional wind speed. Erosion of the crest occurs during wind speed events just above transport threshold, whereas periods of higher magnitude winds result in deposition of sand upwind of the crest, thereby increasing dune height. Although short-term temporal and spatial relations between sand transport and wind speed on the stoss slope are well understood, it is not clear how these relations affect dune morphology over longer periods of time.  相似文献   

10.
The characteristics of sand and dust movement over different sandy grasslands in China’s Otindag Sandy Land were explored based on field observations and laboratory analyses. Threshold wind speeds (the speed required to initiate sand movement) at a height of 2 m above the ground were estimated in the field for different surface types. Threshold wind speed above shifting dunes in the study area is about 4.6 m s−1 at this height. This value was smaller than values observed above other surfaces, resulting in a greater risk of blowing sand above these dunes. Differences in sand transport rates (STR) as a function of the severity of desertification resulted primarily from differences in surface vegetation cover and secondarily from the soil’s grain-size distribution. STR increased exponentially with increasing near-bed wind velocity. Under the same wind conditions, STR increased with increasing severity of desertification: from 0.08 g cm−2 min−1 above semi-fixed dunes to 8 g cm−2 min−1 above semi-shifting dunes and 25 g cm−2 min−1 above shifting dunes. Vegetation’s affect on STR was clearly large. Different components of sand and dust were trapped over different lands: mostly sand grains but little dust were trapped above shifting dunes, but much dust was collected over semi-shifting and semi-fixed dunes. Human disturbance is likely to produce dust even from fixed dunes as a result of trampling by animals and vehicle travel. In addition, spring rainfall decreased the risk of sand and dust movement by accelerating germination of plants and the formation of a soil crust.  相似文献   

11.
Geomorphology of desert sand dunes: A review of recent progress   总被引:2,自引:0,他引:2  
Through the 1980s and 1990s studies of the geomorphology of desert sand dunes were dominated by field studies of wind flow and sand flow over individual dunes. Alongside these there were some attempts numerically to model dune development as well as some wind tunnel studies that investigated wind flow over dunes. As developments with equipment allowed, field measurements became more sophisticated. However, by the mid-1990s it was clear that even these more complex measurements were still unable to explain the mechanisms by which sand is entrained and transported. Most importantly, the attempt to measure the stresses imposed by the wind on the sand surface proved impossible, and the use of shear (or friction) velocity as a surrogate for shear stress also failed to deliver. At the same time it has become apparent that turbulent structures in the flow may be as or more important in explaining sand flux. In a development paralleled in fluvial geomorphology, aeolian geomorphologists have attempted to measure and model turbulent structures over dunes. Progress has recently been made through the use of more complex numerical models based on computational fluid dynamics (CFD). Some of the modelling work has also suggested that notions of dune ‘equilibrium’ form may not be particularly helpful. This range of recent developments has not meant that field studies are now redundant. For linear dunes careful observations of individual dunes have provided important data about how the dunes develop but in this particular field some progress has been made through ground-penetrating radar images of the internal structure of the dunes.

The paradigm for studies of desert dune geomorphology for several decades has been that good quality empirical data about wind flow and sand flux will enable us to understand how dunes are created and maintain their form. At least some of the difficulty in the past arose from the plethora of undirected data generated by largely inductive field studies. More recently, attention has shifted–although not completely–to modelling approaches, and very considerable progress has been made in developing models of dune development. It is clear, however, that the models will continue to require accurate field observations in order for us to be able to develop a clear understanding of desert sand dune geomorphology.  相似文献   


12.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

13.
Temporal trends in grain-size measures on a linear sand dune   总被引:4,自引:0,他引:4  
IAN LIVINGSTONE 《Sedimentology》1989,36(6):1017-1022
Within aeolian dune systems spatial patterns of grain-size variation have been recognized, but little has been said about temporal changes. Increasingly it is becoming clear that linear dunes are associated with bi-directional wind regimes which are often seasonal. In the Namib Sand Sea, where linear dunes are aligned roughly north-south, winds blow from the west in summer and from the east in winter. In response to this regime, sand is eroded from the west slopes and deposited on the east slopes in summer, and eroded from the east slopes and deposited on the west slopes in winter. Preliminary evidence from a study of a single Namib linear dune reported here confirms that this seasonal aeolian regime induces seasonal responses in some grain-size measurements due to the dynamics of sand transport on the dune, the characteristics of the sand source immediately upwind of the sample point and the nature of the deposit. Thus, time of sampling is crucial to the results obtained.  相似文献   

14.
Five small dune fields were investigated in central Sweden in the field and by using LiDAR‐based remote sensing. The chronology of the dunes was determined using optically stimulated luminescence (OSL) dating. Most of the OSL ages indicate dune formation close to the time of deglaciation in this area of Sweden (11–10 cal. ka BP) and later sand drift events appear to have been uncommon, suggesting that most of the dune fields have been stable since their formation and throughout the Holocene. This makes them a valuable archive of past sand drift events and palaeowind directions, even though the dune fields are small compared to most other investigated dune fields around the world. The dunes are primarily of a transverse or parabolic type, and their orientation suggests formation by westerly or northwesterly winds. The local topography appears to have had little control over the formation of the dunes, suggesting that the dunes can be used as a proxy of regional wind directions. All dune fields in this study are linked to glacifluvial deposits that provide spatially and volumetrically limited sources of sand.  相似文献   

15.
Parabolic dunes invade coastal strandplains and overlie prior blown dunes in southeast Queensland. These coastal dune landscapes were produced primarily by real changes in wind strength and frequency. Sand movement began in past glacial ages and in the most recent instance persisted into Holocene time. Four interglacial shores are identified with marine isotope stages 5, 7, 9 and 11, and allow estimation of the ages of the dune and beach sands, by correlation with the EPICA Dome C ice core, as follows: Triangle dune sand, n.d.; Garawongera dune sand, 65 ka; Woorim beach sand, 125 ka; Bribie beach sand, 245 ka; Bowarrady dune sand, 270 ka; Poyungan beach sand, 335 ka; Yankee Jack dune sand, 360 ka; Ungowa beach sand, 410 ka; Awinya dune sand, 430 – 486 ka; Cooloola dune sand, >486 ka.  相似文献   

16.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

17.
The type, scale, and relative abundance of sedimentary structures in four kinds of dunes at White Sands National Monument, New Mexico, were determined by examination of vertical sections on walls of trenches cut through the dunes both in a windward direction and at right angles to this direction. Analysis of cross-stratification in all dunes examined indicated certain common features: sets of cross-strata mostly are medium- to large-scale; nearly all laminae dip downwind at high angles (not uncommonly at 30°-34°); most bounding surfaces between sets of cross-strata are nearly horizontal on the upwind side, but have progressively steeper dips to lee, downwind; and individual sets of cross-strata tend to be thinner and the laminae flatter near the top than at the bottom of a dune in vertical section. Sparse but distinctive structural features that are characteristic of the four types of dunes are varieties of contorted bedding, rare ripple laminae, and either local scour-and-fill bedding, or festoon bedding. Other structures, apparently limited to either one or two types of dunes, are the concave-downward foresets in some parabolic dunes; the low-angle reverse dips of upwind strata on high transverse dunes; and the almost horizontal laminae which represent apparent dip in sections normal to wind direction in dome-shaped and transverse dunes. Describing cross-stratification in terms of three dimensions, dune structure at White Sands consists dominantly of the tabular planar sets, with units thickest near the dune base, thinner above. To a lesser extent the sets are of simple (non-erosion) tabular form and relatively uncommonly, of the trough type. Wedge planar forms are scarce. The planar forms characteristically are of two classes in nearly equal proportions: those in which bounding surfaces are virtually horizontal and those in which they dip at moderate to high degree. A brief comparison is made between the structures of dunes that are characteristic of one effective wind direction, as at White Sands, and certain others formed by winds of two or more directions. Seif dunes of Libya, reversing dunes of the San Luis Valley, Colorado, and star dunes in Saudi Arabia are discussed as examples of complex dunes formed by multi-directional winds.  相似文献   

18.
Burial mounds found on bluff crests in the Midwest United States overlap in scale with conical shaped Peoria Loess hills along the valley margins of the lower Wabash River. Coring of Sugar Loaf Mound, a feature thought to be an artificial mound for some 200 years, indicates that it is a 9 m eolian feature that contains prehistoric human remains. Analysis indicates that a sharp-edged till ridge resulted in a zone of eolian sand and silt accumulation forming both a climbing and a perched dune. A streamline body resulted. Grain-size analysis indicates a bimodal population, suggesting a dust suspension from an outwash source and a local saltation sand source, with a time transgressive shift in dominance. Three other loess cones of comparable scale, shape, lithostratigraphy, and landscape position that were also used as late prehistoric cemeteries indicate a similar pattern of both formation and prehistoric mortuary use in the lower Wabash valley. © 1998 John Wiley & Sons, Inc.  相似文献   

19.
The stabilized northwestern (NW) Negev vegetated linear dunes (VLD) of Israel extend over 1300 km2 and form the eastern end of the Northern Sinai – NW Negev Erg. This study aimed at identifying primary and subsequent dune incursions and episodes of dune elongation by investigating dune geomorphology, stratigraphy and optically stimulated luminescence (OSL) dating. Thirty-five dune and interdune exposed and drilled section were studied and sampled for sedimentological analyses and OSL dating, enabling spatial and temporal elucidation of the NW Negev dunefield evolution.In a global perspective the NW Negev dunefield is relatively young. Though sporadic sand deposition has occurred during the past 100 ka, dunes began to accumulate over large portions of the dunefield area only at ~23 ka. Three main chronostratigraphic units, corresponding to three (OSL) age clusters, were found throughout most of the dunefield, indicating three main dune mobilizations: late to post last glacial maximum (LGM) at 18–11.5 ka, late Holocene (2–0.8 ka), and modern (150–8 years). The post-LGM phase is the most extensive and it defined the current dunefield boundaries. It involved several episodes of dune incursions and damming of drainage systems. Dune advancement often occurred in rapid pulses and the orientation of VLD long axes indicates similar long-term wind directions. The late Holocene episode included partial incursion of new sand, reworking of Late Pleistocene dunes as well as limited redeposition. The modern sand movement only reactivated older dunes and did not lengthen VLDs.This aeolian record fits well with other regional aeolian sections. We suggest that sand supply and storage in Sinai was initiated by the Late Pleistocene exposure of the Nile Delta sands. Late Pleistocene winds, substantially stronger than those usually prevailing since the onset of the Holocene, are suggested to have transported the dune sands across Sinai and into the northwestern Negev.Our results demonstrate the sensitivity of vegetated linear dunes located along the (northern) fringe of the sub-tropical desert belt to climate change (i.e. wind) and sediment supply.  相似文献   

20.
The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote‐sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age‐bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short‐lived aeolian constructional events since ~25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ~12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ~7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform‐normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号