首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.Y. Liao  D.M. Jiang  Z.H. Huang 《Fuel》2004,83(10):1281-1288
Experimental test for premixed laminar combustion of liquefied petroleum gas-air mixtures is conducted in a constant volume combustion bomb. Spherically expanding flames have been employed to measure laminar flame speeds over wide equivalence ratios, at the initial pressures of 0.05, 0.1 and 0.15 MPa, and preheat temperatures from 300 to 400 K. To study the effects of stretch on burning velocity, various Markstein numbers for both strain and curvature have been measured and the effects of initial temperature and pressure on these parameters have been discussed. Following the linear relation between flame speeds and flame stretches, one has then obtained the corresponding unstretched laminar burning velocity after omitting the effect of stretches imposed on these flames. Over the ranges studied, laminar burning velocities are fit by a functional form ul=ul0(Tu/Tu0)αT(Pu/Pu0)βP, and the dependencies of αT and βP upon the equivalence ratio of mixture are also discussed.  相似文献   

2.
D.P. Mishra 《Fuel》2003,82(12):1471-1475
The growing popularity of natural gas as a eco-friendly fuel, is of paramount motivation of present investigation. In the present paper, the effect of initial temperature on the flame structure have been investigated in which laminar one-dimensional planar propagating flames of CH4/air mixtures is simulated numerically using detailed chemical kinetic scheme and realistic transport models. The burning velocities are fundamentally important in developing models to predict progress of combustion. Hence, the burning velocities as a function of initial temperature of unburnt gas have been computed for stoichiometric mixture. The present predictions of burning velocities are compared with reported experimental data of Stone et al. [Combust. Flame. 114 (1998) 546], Hill and Huang [Combust. Sci. Technol. 60 (1980) 7] and Rallis and Garforth [Combust. Flame 31 (1978) 53]. The present prediction lies within the scatter of experimental data. A correlation in the form of Su/Su,0=(Tu/Tu,0)1.575 has been developed to describe the dependence of initial temperature on the burning velocity for stoichiometric mixture. The structures of flame are investigated in details for initial temperature of 300 and 600 K which clearly indicate that detailed chemical kinetics are essential for prediction of the effects of initial temperature on the burning velocities. The present study will help in designing and developing the regenerative combustion systems.  相似文献   

3.
The determination of burning velocity is very important for the calculations used in hazardous waste explosion protection and fuel tank venting, which has a direct impact on environmental protection. The scope of the present study encompass an extensive study to map the variations of the laminar burning velocity and the explosion index of LPG-air and propane-air mixtures over wide ranges of equivalence ratio (Φ = 0.7-2.2) and initial temperature (Ti = 295-400 K) and pressure (Pi = 50-400 kPa). For this purpose a cylindrical combustion bomb was developed. The reliability and accuracy of the built up facility together with the calculation algorithm are confirmed by comparing the values of the laminar burning velocity obtained for a standard fuel (propane at normal pressure normal temperature conditions, NPT) with those available in the literature. The burning velocity was determined using different models depending on the pressure history (P-t) of the central ignition combustion process at the minimum ignition energy.The data obtained for the laminar burning velocity is correlated to SL = SL0(T/T0)α(P/P0)β where SL0 is the burning velocity at NPT, α and β are the temperature and pressure exponents respectively. The value of β is observed to slightly vary with the equivalence ratio for both fuels. However, propane exhibits higher pressure dependency than that of LPG. The maximum laminar burning velocity found for propane is nearly 455 mm/s at Φ = 1.1, while that for LPG is nearly 432 mm/s at 4.5% fuel percent (Φ ≈ 1.5). The maximum explosion index, commonly called the “explosion severity parameter”, is calculated from the determined laminar burning velocity and is found to be 93 bar m/s for propane, and nearly 88 bar m/s for LPG.  相似文献   

4.
In the currently reported work, three typical mixtures of H2, CO, CH4, CO2 and N2 have been considered as representative of the producer gas coming from wood gasification. Laminar burning velocities have been determined from schlieren flame images at normal temperature and pressure, over a range of equivalence ratios within the flammability limits. The study of the effects of flame stretch rate was also performed. Combustion demonstrates a linear relationship between flame radius and time for syngas-air flames. The maximum value of syngas-air flame speeds is observed at the stoichiometric equivalence ratio, while lean or rich mixtures have lower flame speeds. The higher is the syngas heat value the higher is the laminar burning velocity of the syngas mixture. Markstein numbers show that typical syngas-air flames are generally unstable. Karlovitz numbers indicates that typical syngas-air flames are little influenced by stretch rate. Based on the experimental data, a formula for calculating the laminar burning velocities of syngas-air flames is proposed. The magnitude of laminar burning velocity for typical syngas compositions is comparable to that of a simulated mixture comprising 5% H2/95% CO and proved to be similar to methane, although somewhat slower than propane.  相似文献   

5.
A.A. Konnov 《Fuel》2010,89(9):2211-2216
The effect of temperature on the adiabatic laminar burning velocities of CH4 + air and H2 + air flames was analyzed. Available measurements were interpreted using correlation SL = SL0 (T/T0)α. Particular attention was paid to the variation of the power exponent α with equivalence ratio at fixed (atmospheric) pressure. Experimental data and proposed empirical expressions for α as a function of equivalence ratio were summarized. They were compared with predictions of detailed kinetic models in methane + air and hydrogen + air flames. Unexpected non-monotonic behavior of α was found in rich methane + air flames. Modeling results are further examined using sensitivity analysis to elucidate the reason of particular dependences of the power exponent α on equivalence ratio.  相似文献   

6.
Measurement of laminar burning velocity of dimethyl ether-air mixtures was taken under different initial pressures and equivalence ratios using a constant volume bomb and high-speed schlieren photography. The stretched laminar burning velocity increases with the increase of stretch rate. At equivalence ratio of 1.0, low initial pressure gives high stretched flame speed. At initial pressure less than 0.1 MPa, the stoichiometric mixture gives the higher value of stretched flame speed than those at ? = 1.2 and ? = 0.8. The Markstein numbers decrease with the increase of equivalence ratio, and this reveals that lean mixture will maintain higher stability of flame front surface than that of rich mixture in dimethyl ether-air premixed flames.  相似文献   

7.
Kamal Kumar  Chih-Jen Sung 《Fuel》2011,90(3):1004-1011
Experimental results of laminar flame speeds and extinction stretch rates for the conventional (Jet-A) and alternative (S-8) jet fuels are acquired and compared to the results from our earlier studies for neat hydrocarbon surrogate components, including n-decane and n-dodecane. Specifically, atmospheric pressure laminar flame speeds are measured using a counterflow twin-flame configuration for Jet-A/O2/N2 and S-8/O2/N2 mixtures at preheat temperatures of 400, 450, and 470 K and equivalence ratios ranging from 0.7 to 1.4. The flow field is recorded using digital particle image velocimetry. Linear extrapolation is then applied to determine the unstretched laminar flame speed. Experimental data for the extinction stretch rates of the nitrogen diluted jet fuel/oxidizer mixtures as a function of equivalence ratio are also obtained. In addition, the experimental data of Jet-A are compared to the computed values using a chemical kinetic mechanism for a kerosene surrogate reported in literature. A sensitivity analysis is further performed to identify the key reactions affecting the laminar flame speed and extinction stretch rate for this kerosene surrogate.  相似文献   

8.
Laminar flame speeds of hydrogen/natural gas/air mixtures have been measured over a full range of fuel compositions (0–100% volumetric fraction of H2) and a wide range of equivalence ratio using Bunsen burner. High sensitivity scientific CCD camera is use to capture the image of laminar flame. The reaction zone area is employed to calculate the laminar flame speed. The initial temperature and pressure of fuel air mixtures are 293 K and 1 atm. The laminar flame speeds of hydrogen/air mixture and natural gas/air mixture reach their maximum values 2.933 and 0.374 m/s when equivalence ratios equal to 1.7 and 1.1, respectively. The laminar flame speeds of hydrogen/natural gas/air mixtures rise with the increase of volumetric fraction of hydrogen. Moreover, the increase in laminar flame speed as the volumetric fraction of hydrogen increases presents an exponential increasing trend versus volumetric fraction of hydrogen. Empirical formulas to calculate the laminar flame speeds of hydrogen, natural gas, and hydrogen/natural gas mixtures are also given. Using these formulas, the laminar flame speed at different hydrogen fractions and equivalence ratios can be calculated.  相似文献   

9.
《Powder Technology》2002,122(2-3):222-238
This work deals with the determination of the laminar burning velocity and introduces the Markstein length of powder–air mixtures. A powder burner was used to stabilize laminar cornstarch–air dust flames and the laminar burning velocity was determined by means of laser Doppler anemometry. The dust concentration was varied from 0.26 to 0.38 kg m−3. The measured laminar burning velocities were found to be sensitive to the shape of the flame. With the same dust concentration, parabolic flames were found to have a laminar burning velocity, which was almost twice that of a planar flame (ca. 30 cm s−1 for the latter as compared with ca. 54 cm s−1 for the former). From this discrepancy and the flame curvature, the Markstein length could be determined. It was found to have a value of 11.0 mm. This Markstein length was subsequently used to correct the measured laminar burning velocities at various dust concentrations in order to obtain the unstretched laminar burning velocity. The unstretched laminar burning velocity lies between 15 and 30 cm s−1 and is thought to be a property of the dust and of the concentration.  相似文献   

10.
C. Duynslaegher  H. Jeanmart 《Fuel》2010,89(11):3540-3545
This numerical study examines the combustion characteristics of premixed ammonia-air mixtures, with equivalence ratios around unity, at elevated pressure and temperature conditions which are encountered in SI engine operations. The laminar burning velocity, final flame temperature and species concentrations were determined using Konnov’s mechanism [18]. A flat, freely propagating flame was considered. Both equivalence and compression ratios have an important impact on both the laminar burning velocity and the adiabatic flame temperature. Furthermore, only the variation of the equivalence ratio has a major impact on the formation of nitrogen monoxide. It was found that the compression ratio and the final temperature do not have a significant impact on NO yields for equivalence ratios above unity.  相似文献   

11.
Measurements of the adiabatic laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures are reported. Non-stretched flames were stabilized on a perforated plate burner at 1 atm. The Heat Flux method was used to determine burning velocities under conditions when the net heat loss from the flame to the burner is zero. Initial temperatures of the gas mixtures with air were 298 and 338 K. Uncertainties of the measurements were analyzed and assessed experimentally. The overall accuracy of the burning velocities was estimated to be better than ±1 cm/s. These new measurements were compared with the literature data when available. Experimental results in lean ethanol + air mixtures are systematically higher than previous measurements under similar conditions. Good agreement for n-heptane + air flames and for iso-octane + air flames was found with the experiments performed in counter-flow twin flames with linear extrapolation to zero stretch.  相似文献   

12.
A.A. Konnov  R. Riemeijer 《Fuel》2010,89(7):1392-1396
Experimental measurements of the adiabatic burning velocity in methane + hydrogen + air flames using the Heat Flux method are presented. The hydrogen content in the fuel was varied from 0 to 20%. Non-stretched flames were stabilized on a perforated plate burner from 20 to 100 kPa. The equivalence ratio was varied from 0.8 to 1.4. Adiabatic burning velocities of CH4 + H2 + air mixtures were found in good agreement with the literature results at atmospheric pressure. Also low-pressure measurements in CH4 + air flames performed earlier were accurately reproduced. The effects of enrichment by hydrogen on the laminar burning velocity at low pressures have been studied for the first time. Calculated burning velocities using the Konnov mechanism are in satisfactory agreement with the experiments over the entire range of conditions. Pressure dependences of the burning velocities for the three fuels studied could be approximated by an empirical exponential correlation.  相似文献   

13.
The key combustion reactions of synthesis gas at elevated initial temperatures (T 0 = 500–700 K) and pressures (p = 10–30 atm) are identified by analyzing the kinetic mechanism. A reduced mechanism of the oxidation reactions of synthesis gas consisting of 14 elementary reactions involving 13 species is proposed which adequately describes the results of experimental data on the burning velocities of mixtures of synthesis gas with oxygen and inert diluents at T 0 = 300–700 K, p = 10–30 atm, and ratios CO/H2 = 0.05–0.95, and satisfactorily predicts the flame structure and the dependence of the flammability limits on the initial temperature at atmospheric pressure.  相似文献   

14.
Experimental studies have been performed to investigate the flame structure and laminar burning speed of JP-8/oxidizer/diluent premixed flames at high temperatures and pressures. Three different diluents including argon, helium, and a mixture of 14% CO2 and 86% N2 (extra diluent gases), were used. The experiments were carried out in two constant volume spherical and cylindrical vessels. Laminar burning speeds were measured using a thermodynamics model based on the pressure rise method. Temperatures from 493 to 700 K and pressures from 1 to 11.5 atm were investigated. Extra diluent gases (EDG) decrease the laminar burning speeds but do not greatly impact the stability of the flame compared to JP-8/air. Replacing nitrogen in the air with argon and helium increases the range of temperature and pressure in the experiments. Helium as a diluent also increases the temperature and pressure range of stable flame as well as the laminar burning speed. Power law correlations have been developed for laminar burning speeds of JP-8/air/EDG and JP-8/oxygen/helium mixtures at a temperature range of 493-700 K and a pressure range of 1-10 atm for lean mixtures.  相似文献   

15.
This work summarises available measurements of laminar burning velocities in CH4 + H2 + O2 + N2 flames at atmospheric pressure performed using a heat flux method. Hydrogen content in the fuel was varied from 0% to 40%, amount of oxygen in the oxidiser was varied from 20.9% down to 16%, and initial temperature of the mixtures was varied from 298 to 418 K. These mixtures could be formed when enrichment by hydrogen is combined with flue gas recirculation. An empirical correlation for the laminar burning velocity covering a complete range of these measurements is derived and compared with experiments and other correlations from the literature.  相似文献   

16.
A comparative study of the influence of CO2 and H2O on both lean and rich CH4-air laminar flames is performed. Six premixed flames are stabilized on a flat flame burner at atmospheric pressure: lean (with the equivalence ratio maintained constant at ? = 0.7) and rich (with the equivalence ratio maintained constant at ? = 1.4) CH4-air, CH4-CO2-air, and CH4-H2O-air flames. These flames are studied experimentally and numerically. The [CO2]/[CH4] and [H2O]/[CH4] ratios are kept equal to 0.4 for both flames series. Species mole fraction profiles are measured by gas chromatography and Fourier transform infrared spectroscopy analyses of gas samples withdrawn along the vertical axis by a quartz microprobe. Flames structures are computed by using the ChemkinII/Premix code. Four detailed combustion mechanisms are used to calculate the laminar flame velocities and species mole fraction profiles: GRI-Mech 3.0, Dagaut, UCSD, and GDFkin®3.0.  相似文献   

17.
Jet propellant 8 (JP-8)/air laminar burning speed was experimentally measured and its flame structure was studied at high temperatures and pressures using a high-speed camera. The experimental facilities included a spherical vessel, used for the measurement of burning speed, and a cylindrical vessel, used in a shadowgraph system to study flame shape and structure and to measure burning speed. A thermodynamic model was developed to calculate burning speeds using the dynamic pressure rise in the vessel due to the combustion process. The model consists of a central burned gas core of variable temperature surrounded first by a reaction sheet, then by an unburned gas shell with uniform temperature and lastly by thermal boundary layers at the wall and electrodes. Radiation from burned gases to the walls was also included in the model. Burning speeds of laminar flames of JP-8/air were calculated for a wide range of conditions. A Power law correlation was developed to calculate laminar burning speed at temperatures ranging from 500-700 K, pressures of 1-6 atm and equivalence ratios of 0.8-1. Flame structure and cell formations were observed using an optical system. Experimental results showed that pressure and the fuel-air equivalence ratio have a strong influence on flame structure.  相似文献   

18.
A numerical study on premixed methane/ethylene/air flames with various ethylene fractions and equivalence ratios was conducted at room temperature and atmospheric pressure. The effects of ethylene addition on laminar burning velocity, flame structure and flame stability under the condition of lean burning were investigated. The results show that the laminar burning velocity increases with ethylene fraction, especially at a large equivalence ratio. More ethylene addition gives rise to higher concentrations of H, O and OH radicals in the flame, which significantly promotes chemical reactions, and a linear correlation exists between the laminar burning velocity and the maximum H + OH concentration in the reaction zone. With the increase of ethylene fraction, the adiabatic flame temperature is raised, while the inner layer temperature becomes lower, contributing to the enhancement of combustion. Markstein length and Markstein number, representative of the flame stability, increase as more ethylene is added, indicating the tendency of flame stability to improve with ethylene addition.  相似文献   

19.
P. Ouimette 《Fuel》2009,88(3):528-533
The laminar flame velocity of a synthetic gas is calculated numerically with PREMIX and is compared to methane laminar flame velocity. The calculations are performed at different equivalence ratios, initial mixture temperatures and pressures. For each fuel, a correlation for the laminar flame velocity is presented in the form . The low heating value syngas yields a slower laminar flame velocity than methane, especially around stoichiometry. The laminar flame velocities of methane and wood residue syngas react similarly to the effect of pressure, while numerical results suggest that the laminar flame velocity of syngas is more sensitive to the increase of mixture initial temperature.  相似文献   

20.
Dongjo Lee  Sam S. Yoon 《Fuel》2010,89(7):1447-1460
The group combustion of interacting heptanes liquid droplets are numerically simulated by solving two dimensional unsteady laminar Navier-Stokes equations. The unsteady computations for the time-varying vaporization of multi-droplets are carried out with parameters of the Reynolds number (Re), the separation distance (S) between the droplets, and the oxygen mole-fraction. The n-heptane droplets initially at T0 = 300 K are in hot air of 10 atm at Tg = 1250 K. Multi-droplets are staggeringly arranged at a separation distance ranging from 4 to 15 droplet radius. The Reynolds number, based on the droplet diameter and free stream velocity, is varied from Re = 10 to 50. The oxygen mole-fraction of the surrounding air is changed from 15% to 90%. The time variations of the flame structure, the combustion characteristics, and the burning rates are presented and discussed. These results indicated that the staggered arrangement of the multi-droplets induced combustion characteristics distinct from those of a single droplet. The burning rate of the interacting droplets in the staggered arrangement exhibited a relatively strong dependence on the Re, S, and oxygen mole-fraction. The burning rate of the interacting multi-droplets, non-dimensionalized by that of a single droplet, was found as a function of S and Re.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号