首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

2.
厌氧氨氧化颗粒污泥与生物膜均有助于污泥的持留,为研究实际废水中存在的有机物冲击对两种状态厌氧氨氧化污泥的影响差异,将颗粒污泥与聚氨酯海绵填料置于同一反应器内,进行厌氧氨氧化污泥的挂膜,以及高氨氮废水的长期培养驯化。经过120 d的运行,颗粒/填料复合反应器表现出良好的适应性和氮去除率,进水NH_4~+-N浓度从30 mg/L提高至420 mg/L,容积去除负荷从0.08 kgN/(m~3·d)提升至3.39 kgN/(m~3·d),系统内厌氧氨氧化活性良好。通过平行批次试验,对颗粒污泥和生物膜在不同浓度有机物冲击下的去除效果进行对比,在初始NO_2~--N为125 mg/L左右、COD≤200 mg/L时,两种体系中厌氧氨氧化反应均没有受到抑制,且一定程度得到了促进;而COD在300 mg/L时产生了明显的抑制作用。相比于生物膜,等质量的颗粒污泥表现出了更好的抵抗有机物冲击的能力。  相似文献   

3.
以人工配制的含氮废水为研究对象,通过控制反应器内废水的pH8.48、碱度1 439 mg/L、DO0.1 mg/L、氨氮容积负荷为0.27 kg/(m3.d),在长污泥龄(106 d)活性污泥亚硝化系统中成功实现了反应器出水NH4+-N与NO-2-N的浓度比例接近1∶1的稳定亚硝化积累结果,为早日能够运用亚硝化/厌氧氨氧化生物脱氮工艺实现高效生物脱氮提供了科学依据。  相似文献   

4.
污泥消化液作为污泥厌氧处理过程的副产物,具有低碳高氮的特点,传统生物脱氮技术难以有效处理。为此,利用固定生物膜-活性污泥反应器(IFAS),考察同步硝化、厌氧氨氧化和反硝化(SNAD)工艺对污泥消化液的处理效能。结果表明,在进水NH~+_4-N浓度为400 mg/L、HRT为18 h的最佳运行条件下,SNAD-IFAS系统对NH~+_4-N、TN与COD的最大去除率分别达到92.6%、77.1%和69.4%,TN去除负荷为12.4 mg/(L·h)。菌群特性活性分析结果表明,亚硝化过程主要发生在悬浮污泥中,厌氧氨氧化与反硝化过程主要发生在生物膜上。微生物群落分析表明,HRT的变化会显著影响微生物群落结构。  相似文献   

5.
为了实现低碳城市污水高效深度脱氮,构建短程反硝化/厌氧氨氧化+硝化颗粒污泥脱氮工艺,研究硝化颗粒污泥的培养策略。结果表明,采用上向流污泥床(USB)反应器以序批式运行,并逐步缩短沉淀时间,成功培养出了硝化颗粒污泥,其中90.52%的污泥颗粒粒径>0.5 mm;颗粒污泥的沉降速度随着粒径的增大而增大,0.5~0.9 mm粒径的颗粒污泥平均沉降速度为15.66 m/h。颗粒污泥形成后,USB反应器的氨氮容积去除速率达到1.31 g/(L·d)。短程反硝化厌氧氨氧化+硝化颗粒污泥工艺的脱氮性能分析结果表明,该工艺脱氮效率高、有机碳源需求量低,适合处理低碳城市污水并实现深度脱氮。  相似文献   

6.
以污水处理厂氧化沟污泥为泥种,采用进水低碳高磷、两阶段的运行方式进行反硝化聚磷污泥的培养,约100 d成功驯化培养出反硝化聚磷污泥。第1阶段以厌氧/好氧的运行方式驯化好氧聚磷污泥,运行约40 d,最大释磷量、最大聚磷量和最大除磷量分别可达到77.2、89.4、25.0 mg/L,表现出较强的聚磷能力;第2阶段采用厌氧/缺氧/好氧的运行方式驯化反硝化聚磷污泥,运行60 d,缺氧聚磷量占总聚磷量的百分比呈上升趋势。硝化污泥经过100 d的驯化可去除约50 mg/L的氨氮,硝化率基本稳定在98.5%以上。硝化速率本符合零级动力学方程,比硝化速率常数为0002 4 h-1;好氧聚磷速率和缺氧聚磷速率基本符合一级动力学方程,速率常数分别是0.377、0740 g/(L·h-1)。利用驯化培养成功的反硝化聚磷污泥和硝化污泥进行了A 2N-SBR试验,结果表明:在进水COD、氨氮和磷分别为188.0、54.8、725 mg/L时,去除率分别为93.5%、76.7%和941%,驯化培养的双污泥具有良好的脱氮除磷效果。  相似文献   

7.
为开发总氮去除负荷高、生长稳定的厌氧氨氧化颗粒污泥扩培方法,文章以2L厌氧氨氧化颗粒污泥作为接种污泥,在50 L发酵罐中以SBR的方式,由配水提供主营养成分及微量元素,根据颗粒污泥的脱氮效能,随时调整进水水质,逐渐提高总氮负荷,摸索适宜颗粒污泥扩培的条件;在106 d的时间里,颗粒污泥浓度从800 mg/L增长到11 300 mg/L,总氮去除负荷为3.38 kg/(m~3·d),总氮去除率达到80%以上。通过高通量测序证实颗粒污泥中含有11%的厌氧氨氧化菌。  相似文献   

8.
硝化颗粒污泥的培养及其硝化性能研究   总被引:2,自引:0,他引:2  
在连续流上流式好氧反应器中接种厌氧颗粒污泥进行硝化颗粒污泥的培养及其硝化性能研究,结果表明,通过逐步提高进水N/C值能培养出高活性硝化颗粒污泥;进水氨氮浓度对系统的硝化性能没有显著影响,系统对氨氮的去除率85%;当氨氮容积负荷0.40kgNH4+-N/(m3.d)时,系统实现短程硝化,亚硝酸盐氮积累率平均高达83%。  相似文献   

9.
短程硝化/厌氧氨氧化一步法自养脱氮中试研究   总被引:3,自引:0,他引:3  
一步法自养脱氮工艺在高氨氮废水处理中具有运行能耗低、不需外加碳源等优点。利用总容积为50 m3的SBR反应器处理高氨氮废水,成功实现了短程硝化/厌氧氨氧化一步法自养脱氮。反应器对不同氨氮浓度(350~4 300 mg/L)的废水均表现出良好的处理效果,对氨氮与总氮的平均去除率分别达到95%和90%以上。同时,还研究了反应器运行的主要影响因素、污泥粒径分布及微生物群落结构。结果表明,系统内形成了红色的厌氧氨氧化颗粒,且颗粒的比例随运行逐渐增加;而维持合理的溶解氧和氨氮浓度是实现高负荷脱氮的关键因素。  相似文献   

10.
基于固体碳源反硝化的低碳源污水生物硝化技术   总被引:1,自引:0,他引:1  
在污水处理工艺末端嵌入固体碳源反硝化滤池,可以不改变污水处理厂的原有工艺并提高对总氮的去除效率,方便应对污水厂的提标压力和低碳源污水的脱氮问题。以序批式生物膜反应器(SBBR)为对象,探究有利于低碳源污水生物硝化的运行模式和固体碳源反硝化滤池的脱氮效果。结果表明:对于COD为93~140 mg/L、TN为41~45 mg/L的低碳源污水,在SRT为20d、充水比为0.4、周期时间为3 h、氨氮负荷为0.112 kg/(m~3·d)、曝气量为3.8 m~3/(h·m~3)的情况下,SBBR的出水氨氮为1.5 mg/L,出水硝态氮为16 mg/L,出水硝态氮占出水总氮的70%,实现了高效稳定硝化。富含硝态氮的SBBR反应器出水通过固体碳源反硝化滤池后,出水总氮平均值为4.23 mg/L,COD平均值为25 mg/L,均低于《城镇污水处理厂污染物排放标准》(GB 18918—2002)的一级A标准,系统总的脱氮率大于90%,获得了优异的低碳源污水生物脱氮效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号