首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg1???n ?L n ?kg?1, and the corresponding K foc values ranged from 56 to 3,725 mg1???n ?L n ?kg?1. Based on potential retention, the substrates may be classified as straw >> sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz >> tebuconazole–boscalid > napropamide >> MCPA–isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil–sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.  相似文献   

2.
To date, sorption of organic compounds to nanomaterials has mainly been studied for the nanomaterial in its pristine state. However, sorption may be different when nanomaterials are buried in sediments. Here, we studied sorption of Perfluorooctane sulfonate (PFOS) to sediment and to sediment with 4% multiwalled carbon nanotubes (MWCNTs), as a function of factors affecting PFOS sorption; aqueous concentration, pH and Ca2+ concentration. Sorption to MWCNT in the sediment–MWCNT mixtures was assessed by subtracting the contribution of PFOS sorption to sediment-only from PFOS sorption to the total sediment–MWCNT mixture. PFOS Log KD values ranged 0.52–1.62 L kg?1 for sediment and 1.91–2.90 L kg?1 for MWCNT present in the sediment. The latter values are relatively low, which is attributed to fouling of MWCNT by sediment organic matter. PFOS sorption was near-linear for sediment (Freundlich exponent of 0.92 ± 0.063) but non-linear for MWCNT (Freundlich exponent of 0.66 ± 0.03). Consequently, the impact of MWCNT on sorption in the mixture was larger at low PFOS aqueous concentration. Effects of pH and Ca2+ on PFOS sorption to MWCNT were statistically significant. We conclude that MWCNT fouling and PFOS concentration dependency are important factors affecting PFOS–MWCNT interactions in sediments.  相似文献   

3.
Dissolved organic matter (DOM) affects arsenite [As(III)] toxicity by altering its sorption equilibrium at the cell wall interface. A better understanding of such mechanism is of great importance to assess As(III) ecotoxicity in aquatic systems. Batch experiments were conducted to study the effects of DOM on the regulation of As(III) sorption and toxicity in the diatom Navicula sp. The influence of humic acid (HA) on As(III) toxicity was assessed by measuring algal growth, chlorophyll a, and reactive oxygen species (ROS), whereas As(III) mobility across the cell wall was estimated by determining the concentration of intracellular, cell-wall-bound, and free As(III) ions in cell media. Results showed that the effects of HA on arsenite toxicity varied depending on various combinations of As(III)-HA concentrations. EC50 had an approximate threefold increase from 8.32 (HA-free control) to 22.39 μM (at 20 mg L?1 HA) when Navicula sp. was exposed to 1.0–100.0 μM of As(III), compared to an overall low complexation ratio of HA-As(III) in a range of 0.91–6.00 %. The cell wall-bound and intracellular arsenic content decreased by 19.8 and 20.3 %, respectively, despite the lower arsenite complexation (2.10?±?0.16 % of the total As). Meanwhile, intracellular ROS was decreased by 12.6 % in response to 10.0 μM As(III) and 10 mg L?1 HA vs. the HA-free control. The significant contrast indicated that complexation alone could not explain the HA-induced reduction in arsenite toxicity and other factors including HA–cell surface interactions may come into play. Isotherms describing adsorption of HA to the Navicula sp. cells combined with morphological data by scanning electron microscopy revealed a protective HA floccule coating on the cell walls. Additional Fourier transform infrared spectroscopic data suggested the involvement of carboxylic groups during the adsorption of both HA and As(III) on the Navicula sp. cell surface. Collective data from this study suggest that cell wall-bound HA can moderate As(III) toxicity through the formation of a protective floccule coating occupying As(III) sorption sites and decreased effective functional groups capable of binding As(III). Our findings imply that As(III) toxicity can be alleviated due to the increased hindrance to cellular internalization of As(III) in the presence of naturally abundant DOM in water.  相似文献   

4.
Sorption of phenanthrene by soils contaminated with heavy metals   总被引:4,自引:0,他引:4  
Gao Y  Xiong W  Ling W  Xu J 《Chemosphere》2006,65(8):1355-1361
The fate of polycyclic aromatic hydrocarbons (PAHs) in soils with co-contaminants of heavy metals has yet to be elucidated. This study examined sorption of phenanthrene as a representative of PAHs by three soils contaminated with Pb, Zn or Cu. Phenanthrene sorption was clearly higher after the addition of heavy metals. The distribution coefficient (K(d)) and the organic carbon-normalized distribution coefficient (K(oc)) for phenanthrene sorption by soils spiked with Pb, Zn or Cu (0-1000 mg kg(-1)) were approximately 24% larger than those by unspiked ones, and the higher contents of heavy metals added into soils resulted in the larger K(d) and K(oc) values. The enhanced sorption of phenanthrene in the case of heavy metal-contaminated soils could be ascribed to the decreased dissolved organic matter (DOM) in solution and increased soil organic matter (SOM) as a consequence of DOM sorption onto soil solids. Concentrations of DOM in equilibrium solution for phenanthrene sorption were lower in the case of the heavy metal-spiked than unspiked soils. However, the decreased DOM in solution contributed little to the enhanced sorption of phenanthrene in the presence of metals. On the other hand, the sorbed DOM on soil solids after the addition of heavy metals in soils was found to be much more reactive and have far stronger capacity of phenanthrene uptake than the inherent SOM. The distribution coefficients of phenanthrene between water and the sorbed DOM on soil solids (K(ph/soc)) were about 2-3 magnitude larger than K(d) between water and inherent SOM, which may be the dominant mechanism of the enhanced sorption of phenanthrene by soils with the addition of heavy metals.  相似文献   

5.
Intensive agricultural land use imposes multiple pressures on streams. More specifically, the loading of streams with nutrient-enriched soil from surrounding crop fields may deteriorate the sediment quality. The current study aimed to find out whether stream restoration may be an effective tool to improve the sediment quality of agricultural headwater streams. We compared nine stream reaches representing different morphological types (forested meandering reaches vs. deforested channelized reaches) regarding sediment structure, sedimentary nutrient and organic matter concentrations, and benthic microbial respiration. Main differences among reach types were found in grain sizes. Meandering reaches featured larger mean grain sizes (50–70 μm) and a thicker oxygenated surface layer (8 cm) than channelized reaches (40 μm, 5 cm). Total phosphorous amounted for up to 1,500 μg?g?1 DW at retentive channelized reaches and 850–1,050 μg?g?1 DW at the others. While N-NH4 accumulated in the sediments (60–180 μg?g?1 DW), N-NO3 concentrations were generally low (2–5 μg?g?1 DW). Benthic respiration was high at all sites (10–20 g O2 m?2?day?1). Our study shows that both hydromorphology and bank vegetation may influence the sediment quality of agricultural streams, though effects are often small and spatially restricted. To increase the efficiency of stream restoration in agricultural landscapes, nutrient and sediment delivery to stream channels need to be minimized by mitigating soil erosion in the catchment.  相似文献   

6.
The Sarno River is nicknamed “the most polluted river in Europe”. The main goal of this study is to enhance our knowledge on the Sarno River water and sediment quality and on its environmental impact on the gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) in order to become a useful assessment tool for the regional administrations. For these reasons, 32 selected polychlorinated biphenyls (PCBs) and aldrin, α-BHC, β-BHC, δ-BHC, γ-BHC (lindane), 4,4′-DDD, 4,4′-DDE, 4,4′-DDT, dieldrin, endosulfan I, endosulfan II, endosulfan sulphate, endrin, endrin aldehyde, heptachlor, heptachlor epoxide (isomer B) and methoxychlor were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediments. Total concentrations of PCBs ranged from 1.4 to 24.9 ng L?1 in water (sum of DP and SPM) and from 1.01 to 42.54 ng g?1 in sediment samples. The concentrations of total organochlorine pesticides (OCPs) obtained in water (sum of DP and SPM) ranged from 0.54 to 7.32 ng L?1 and from 0.08 to 5.99 ng g?1 in sediment samples. Contaminant discharges of PCBs and OCPs into the sea were calculated in about 1,247 g day?1 (948 g day?1 of PCBs and 326 g day?1 of OCPs), showing that this river should account as one of the main contribution sources of PCBs and OCPs to the Tyrrhenian Sea.  相似文献   

7.
This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [Kf (sorption)] ranged from 0.37 to 1.34 µmol (1–1/n) L1/n kg?1 and showed a significant positive correlation with the clay content of the soil, while the Kf (desorption) ranged from 3.62 to 5.36 µmol (1–1/n) L1/n kg?1. The Kf (desorption) values were higher than their respective Kf (sorption), indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0?30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ~3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.  相似文献   

8.
Black carbon (BC), characterized by high microporosity and high specific surface area (SSA), has been demonstrated to have substantial contributions to the sorption of hydrophobic organic chemicals in soils and sediments. Other naturally occurring organic matters provide soft and penetrable sorption domains while may cling to BC and affect its original surface properties. In this work, we studied the sorption sites of a Yangtze River sediment sample with organic carbon (OC) content of 3.3 % and the preheated sediment (combusted at 375 °C) with reduced OC content (defined as BC) of 0.4 % by gas and pyrene sorption. The SSA and microporosity of the pristine and preheated sediments were characterized by N2 and CO2 adsorption. The results suggest that the adsorption of N2 was hindered by amorphous organic carbon (AOC) in the pristine sediment but CO2 was not. Instead, the uptake of CO2 was higher in the presence of AOC, likely due to the partition of CO2 molecules into the organic matter. The pyrene adsorptions to BC in pristine and preheated sediments show a similar adsorption capacity at high concentration, suggesting that AOC of ca. 2.9 % in the pristine sediment does not reduce the accessibility to the sorption sites on BC for pyrene.  相似文献   

9.
This study examined residual concentrations and associated ecological risks of the organochlorine pesticides (OCPs) hexa- chlorocyclohexane (HCH) and dichloro-diphenyl-trichloroethane (DDT) in water, sediment, and fish of the Songhua River in Zhaoyuan County, China. In June 2012, 10 water, 10 sediment, and 20 fish samples were collected. Residual concentrations of ΣHCH and ΣDDT ranged from 10.0–35.59 ng L?1 (mean 28.03 ± 11.66 ng L?1) and 5.12–39.66 ng L?1 (mean 32.36 ± 11.58 ng L?1) for water. Residual concentrations of ΣHCH and ΣDDT ranged from 0.52–3.00 ng g?1 (mean 2.04 ± 0.73 ng g?1) and 0.34–3.41 ng g?1 (mean 2.38 ± 0.92 ng g?1) for sediment. The ratios of α-HCH/γ-HCH were close to 1 at the majority of sampling points, indicating considerable new pollution from the use of lindane. The ratios of p,p′-DDE + p,p′-DDD/ΣDDT were less than 0.5, indicating recent inputs from DDT impurities in dicofol. All HCH and DDT isomers except for p,p′-DDD were detected in fish tissue samples, but the associated ecological risks were estimated to be below levels of concern. The study revealed a historical usage of OCPs in the Zhaoyuan section of the Songhua River and new OCP from the use of lindane and dicofol.  相似文献   

10.
This study investigated the influence of solution salinity, pH and the sediment characteristics on the sorption and desorption of perfluorooctane sulfonate (PFOS). The results showed that the sorption of PFOS onto sediment increased by a factor of 3 as the CaCl2 concentration increased from 0.005 to 0.5 mol L−1 at pH 7.0, and nearly 6 at pH 8.0. Desorption hysteresis occurred over all salinity. The thermodynamic index of irreversibility (TII) values increased with increasing concentration of CaCl2. Maximum irreversibility was found in the sorption systems with CaCl2 in the concentration of 0.5 mol L−1. The results suggested that PFOS can be largely removed from the water with increasing salinity, and get trapped onto sediments irreversibly. These phenomena could be explained by salting-out effect and Ca-bridging effect. Studies also suggested that the content of total organic carbon is the dominant psychochemical properties of sediment controlling the sorption of PFOS.  相似文献   

11.
The ubiquitous dissolved organic matter (DOM) has an important influence on transformation of organic contaminants through the production of reactive substances, such as ?OH, 1O2, and 3DOM*. The photolysis of a higher chlorinated polychlorinated biphenyl (PCB) congener (2,2′,4,4′,5,5′-hexachlorobiphenyl, PCB 153) under simulated sunlight in presence of humic acid (HA) was investigated. Degradation of PCB 153 was accelerated significantly by the addition of HA, with a rate constant of 0.0214, 0.0413, and 0.0358 h?1 in the initial 18 h of irradiation in presence of 1, 5, and 20 mg/L HA, respectively. The main photodegradation products analyzed by gas chromatography mass spectrometry were 4-hydroxy-2,2′,4′,5,5′-pentaCB and 2,4,5-trichlorobenzoic acid. Main reactive species involved were determined by the electron spin-resonance spectroscopy, including 1O2 and ?OH. Special scavengers were added to elucidate the photolysis mechanisms. By using the specific scavengers, it turned out that ?OH accounted for 29.3 % of the degradation, and the intra-DOM reactive species (1O2, ?OH, and 3DOM*) accounted for 59.6 % of the degradation. Photo-transformation sensitized by DOM, which involves both aqueous and intra-DOM reactions of PCBs with reactive species, may be one of the most important mechanisms for natural attenuation of PCBs.  相似文献   

12.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

13.
The presence of pharmaceutical drugs in the environment is an important field of toxicology, since such residues can cause deleterious effects on exposed biota. This study assessed the ecotoxicological acute and chronic effects of two anticholinesterasic drugs, neostigmine and pyridostigmine in Daphnia magna. Our study calculated 48 h-EC50 values for the immobilization assay of 167.7 μg L?1 for neostigmine and 91.3 μg L?1 for pyridostigmine. In terms of feeding behavior, we calculated a 5 h-EC50 for filtration rates of 7.1 and 0.2 μg L?1 for neostigmine and pyridostigmine, respectively; for the ingestion rates, the calculated EC50 values were, respectively, 7.5 and 0.2 μg L?1 for neostigmine and pyridostigmine. In the reproduction assay, the most affected parameter was the somatic growth rate (LOECs of 21.0 and 2.9 μg L?1 for neostigmine and pyridostigmine, respectively), followed by the fecundity (LOECs of 41.9 and 11.4 μg L?1 for neostigmine and pyridostigmine, respectively). We also determined a 48 h-IC50 for cholinesterase activity of 1.7 and 4.5 μg L?1 for neostigmine and pyridostigmine, respectively. These results demonstrated that both compounds are potentially toxic for D. magna at concentrations in the order of the μg L?1.  相似文献   

14.
Although the attention for vanadium (V) as a potentially harmful element is growing and some countries adopted threshold values for V in soils, sediments, groundwater, or surface water, V is generally of little importance in environmental legislation and the knowledge about the behavior of V in the environment is still limited. In the present study, the release of V from oxidized sediments, sediment-derived soils, and certified reference materials was investigated by means of several types of leaching tests and extractions that are frequently used for soil and sediment characterization. The pHstat leaching tests and single and sequential extractions applied in this study show that V generally displays a very limited actual and potential mobility in sediment. “Mobile” V concentrations, as estimated by the amount of V released by a single extraction with CaCl2 0.01 mol L?1, were low, even in the most contaminated sediment samples. Only under strongly acidifying conditions (pH 2), such as in the case of ingestion of soil or sediment or in accidental spills, a substantial release of V can be expected.  相似文献   

15.
Two sediments were demineralized and sequentially fractionated into extracted fractions [free lipid (FL), bound lipid (BL) and lignin (LG)] and residual fractions [free lipid free (FLF), bound lipid free (BLF) and lignin free (LGF)]. The sorption isotherms of phenanthrene (Phen) were examined to evaluate the importance of various fractions on sorption. A lignin extraction procedure was for the first time applied to separate the lignin or degraded lignin fraction from sediment organic matter (SOM). The extracted LG was similar to model lignin in terms of elemental ratios and sorption behavior. FL and LG fractions were quite important, as their contents were much higher than reported values. Phen sorption for the extracted fractions was almost linear, whereas that for the residual fractions was nonlinear, especially for LGF with n 0.56–0.63. As the different organic fractions were removed sequentially, sorption energy distribution on the residual sediment organic matter (SOM) became more heterogeneous. In addition, increasing sorption capacity for the residual fractions, except for BLF with its high polarity, suggested that more sorption sites on the SOM matrix became accessible to Phen. The sorption capacity for LGF was comparable to that of condensed SOM. The residual fraction LGF generally controlled the overall sorption at low Phen concentration, but the extractable fraction FL surpassed the former fraction at high Phen concentration, demonstrating the importance of condensed SOM in the sorption of hydrophobic organic compounds (HOCs) in sediments.  相似文献   

16.
A total of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediment samples from Taihu Lake were analyzed by instruments, and sediment extracts were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-o-deethylase (EROD) induction using a rat hepatoma cell line (H4IIE). The cause–effect relationship between the observed EROD activity and chemical concentrations of PAHs was examined. Our results showed that sediment extracts could induce significant AhR effects, and the bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents of raw extracts (TEQbios) ranged from 2.7 to 39.8 pg g?1 dw. Chemical analysis showed that 16 PAHs were all detected in all samples, and their total concentrations (Σ16PAHs) ranged from 179.8 to 1,669.4 ng g?1 dw. The abundance of sedimentary PAHs in the three regions (Meiliang Bay, Gonghu Bay, and Xukou Bay) showed a decreasing trend from the inflow region to the outflow region. Chemical analysis-derived TEQs (TEQcals) contributed by PAHs ranged from 1.6 to 20.7 pg g?1 dw. The mean contribution rates (CRs) of PAHs to TEQbios were 48.9 %. In Meiliang Bay, EROD effects of 60 % samples were caused by PAHs whose CRs were more than 60 %, while in most sampling sites of Gonghu Bay and Xukou Bay, the CRs of PAHs to TEQbios were basically below 40 %. In addition, preliminary ecological risk assessment found that PAHs in sediments have very low ecological impact based on the chemical data of PAHs, while the sediments might pose an unacceptable risk to aquatic organisms and their predators based on the data of TEQbio. These findings showed that EROD effects of sediment extracts from Taihu Lake were also caused by other compounds, such as dioxins, polychlorinated biphenyls, etc., together.  相似文献   

17.
Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C3-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax® beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for kslow and kvery slow. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions.  相似文献   

18.
Sorption and desorption of aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropylpyrimidine-4-carboxylic acid) were compared to that of the structurally similar herbicide picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) in three soils of differing origin and composition to determine if picloram data is representative of aminocyclopyrachlor behavior in soil. Aminocyclopyrachlor and picloram batch sorption data fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram (1/n = 0.80–0.90). Freundlich sorption coefficients (K f) for aminocyclopyrachlor were lowest in the eroded and depositional Minnesota soils (0.04 and 0.12 μmol (1–1/n) L1/n kg?1) and the highest in Molokai soil (0.31 μmol (1–1/n) L1/n kg?1). For picloram, K f was lower in the eroded (0.28 μmol (1–1/n) L1/n kg?1) as compared to the depositional Minnesota soil (0.75 μmol (1–1/n) L1/n kg?1). Comparing soil to soil, K f for picloram was consistently higher than those found for aminocyclopyrachlor. Desorption of aminocyclopyrachlor and picloram was hysteretic on all three soils. With regard to the theoretical leaching potential based on groundwater ubiquity score (GUS), leaching potential of both herbicides was considered to be similar. Aminocyclopyrachlor would be ranked as leacher in all three soils if t1/2 was > 12.7 days. To be ranked as non-leacher in all three soils, aminocyclopyrachlor t1/2 would have to be <3.3 days. Calculated half-life that would rank picloram as leacher was calculated to be ~15.6 d. Using the current information for aminocycloprachlor, or using picloram data as representative of aminocycloprachlor behavior, scientists can now more accurately predict the potential for offsite transport of aminocycloprachlor.  相似文献   

19.
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 2? and HCO3 ? as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 2? and HCO3 ? (41.6 and 32.8 mEq L?1, respectively) and the maximum selected initial COD (750 mg L?1), applying a current density of 11.9 mA cm?2 for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.  相似文献   

20.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号