首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intravascular ultrasound (IVUS) is a catheter based medical imaging technique particularly useful for studying atherosclerotic disease. It produces cross-sectional images of blood vessels that provide quantitative assessment of the vascular wall, information about the nature of atherosclerotic lesions as well as plaque shape and size. Automatic processing of large IVUS data sets represents an important challenge due to ultrasound speckle, catheter artifacts or calcification shadows. A new three-dimensional (3-D) IVUS segmentation model, that is based on the fast-marching method and uses gray level probability density functions (PDFs) of the vessel wall structures, was developed. The gray level distribution of the whole IVUS pullback was modeled with a mixture of Rayleigh PDFs. With multiple interface fast-marching segmentation, the lumen, intima plus plaque structure, and media layers of the vessel wall were computed simultaneously. The PDF-based fast-marching was applied to 9 in vivo IVUS pullbacks of superficial femoral arteries and to a simulated IVUS pullback. Accurate results were obtained on simulated data with average point to point distances between detected vessel wall borders and ground truth <0.072 mm. On in vivo IVUS, a good overall performance was obtained with average distance between segmentation results and manually traced contours <0.16 mm. Moreover, the worst point to point variation between detected and manually traced contours stayed low with Hausdorff distances <0.40 mm, indicating a good performance in regions lacking information or containing artifacts. In conclusion, segmentation results demonstrated the potential of gray level PDF and fast-marching methods in 3-D IVUS image processing.  相似文献   

2.
Tissue characterization in intravascular ultrasound images   总被引:9,自引:0,他引:9  
Intravascular ultrasound (IVUS) imaging permits direct visualization of vascular pathology. It has been used to evaluate lumen and plaque in coronary arteries and its clinical significance for guidance of coronary interventions is increasingly recognized. Conventional manual evaluation is tedious and time-consuming. This paper describes a highly automated approach to segmentation of coronary wall and plaque, and determination of plaque composition in individual IVUS images and pullback image sequences. The determined regions of plaque were classified in one of three classes: soft plaque, hard plaque, or hard plaque shadow. The method's performance was assessed in vitro and in vivo in comparison with observer-defined independent standards. In the analyzed images and image sequences, the mean border positioning error of the wall and plaque borders ranged from 0.13-0.17 mm. Plaque classification correctness was 90%.  相似文献   

3.
The main aim of this paper is to propose a novel set of metrics that measure the quality of the image enhancement of mammographic images in a computer-aided detection framework aimed at automatically finding masses using machine learning techniques. Our methodology includes a novel mechanism for the combination of the metrics proposed into a single quantitative measure. We have evaluated our methodology on 200 images from the publicly available digital database for screening mammograms. We show that the quantitative measures help us select the best suited image enhancement on a per mammogram basis, which improves the quality of subsequent image segmentation much better than using the same enhancement method for all mammograms.  相似文献   

4.
用无需选取参数的Unit-linking PCNN进行自动图像分割   总被引:1,自引:0,他引:1  
脉冲耦合神经网络(PCNN-Pulse Coupled Neural Network)是一种有生物学依据的人工神经网络,它可有效地用于图像分割。基于PCNN的图像分割效果取决于PCNN中各参数的选择。然而,图像分割时,各种不同的图像对应的PCNN参数是不同的,而PCNN参数的选择是困难的。本文提出了一种基于Unit-linking PCNN的图像分割新方法,解决了PCNN图像分割参数选择的难题。用本文提出的新方法可有效地自动分割各种图像,而无需考虑PCNN参数的选择,这对于PCNN的理论研究和实际应用有重要的意义。  相似文献   

5.
邱爽  赵耀  韦世奎 《信号处理》2022,38(6):1144-1154
图像指代分割作为计算机视觉与自然语言处理交叉领域的热点问题,其目的是根据自然语言描述在图像中分割出相应的目标区域。随着相关深度学习技术的成熟和大规模数据集的出现,这项任务引起了研究者的广泛关注。本文对图像指代分割算法的发展进行了梳理和分析。首先根据多模态信息的编码解码方式,将现有图像指代分割算法分成基于多模态信息融合和基于多尺度信息融合两类进行了系统阐述,重点介绍了基于CNN-LSTM框架的方法、结构复杂的模块化方法和基于图的方法;然后,对用于图像指代分割任务的典型数据集和主流评价指标进行了总结与统计;之后,通过实验综合比较了现有的图像指代分割模型之间的性能差异并进一步验证了各种模型的优缺点。最后,对这一领域现有方法中存在的问题进行讨论分析,并对未来的发展方向进行了展望,表明了针对复杂的指代描述,需要通过多步、显式的推理步骤来解决图像指代分割问题。   相似文献   

6.
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown.  相似文献   

7.
Image segmentation is the partition of an image into a set of nonoverlapping regions whose union is the entire image. The image is decomposed into meaningful parts which are uniform with respect to certain characteristics, such as gray level or texture. In this paper, we propose a methodology for evaluating medical image segmentation algorithms wherein the only information available is boundaries outlined by multiple expert observers. In this case, the results of the segmentation algorithm can be evaluated against the multiple observers' outlines. We have derived statistics to enable us to find whether the computer-generated boundaries agree with the observers' hand-outlined boundaries as much as the different observers agree with each other. We illustrate the use of this methodology by evaluating image segmentation algorithms on two different applications in ultrasound imaging. In the first application, we attempt to find the epicardial and endocardial boundaries from cardiac ultrasound images, and in the second application, our goal is to find the fetal skull and abdomen boundaries from prenatal ultrasound images  相似文献   

8.
刘燕  董蓉  李勃 《电视技术》2017,(11):32-39
图像分割是计算机视觉研究中重要的一部分,其主要目的是在图像中将兴趣域目标与背景分割,关系到后续的目标识别、图像理解等操作的准确性.经过几十年的发展,许多优秀的图像分割的方法被提出.机器学习是当今时代的研究热点,基于深度卷积神经网络等机器学习的图像分割研究进展迅速.总结介绍了应用于图像分割的几种典型机器学习方法,分析比较了相关的分割原理步骤、优缺点和发展现状.最后分析了基于机器学习的图像分割算法的发展方向.  相似文献   

9.
A novel objective non-reference metric for multimodal image sensor fusion is presented. Using the joint segmentation of the input images and entropy of the regions as the priority, an `ideal' fused image is obtained. The metric is based on computing how accurately the important regions from the input images are transferred into the fused image. Experiments have shown that the obtained metric values correspond better to the subjective quality of the fused images than other state-of-the-art fusion metrics  相似文献   

10.
During an intravascular ultrasound (IVUS) intervention, a catheter with an ultrasound transducer is introduced in the body through a blood vessel, and then, pulled back to image a sequence of vessel cross sections. Unfortunately, there is no 3-D information about the position and orientation of these cross-section planes, which makes them less informative. To position the IVUS images in space, some researchers have proposed complex stereoscopic procedures relying on biplane angiography to get two X-ray image sequences of the IVUS transducer trajectory along the catheter. To simplify this procedure, we and others have elaborated algorithms to recover the transducer 3-D trajectory with only a single view X-ray image sequence. In this paper, we present an improved method that provides both automated 2-D and 3-D transducer tracking based on pullback speed as a priori information. The proposed algorithm is robust to erratic pullback speed and is more accurate than the previous single-plane 3-D tracking methods.  相似文献   

11.
A wrapper-based approach to image segmentation and classification.   总被引:1,自引:0,他引:1  
The traditional processing flow of segmentation followed by classification in computer vision assumes that the segmentation is able to successfully extract the object of interest from the background image. It is extremely difficult to obtain a reliable segmentation without any prior knowledge about the object that is being extracted from the scene. This is further complicated by the lack of any clearly defined metrics for evaluating the quality of segmentation or for comparing segmentation algorithms. We propose a method of segmentation that addresses both of these issues, by using the object classification subsystem as an integral part of the segmentation. This will provide contextual information regarding the objects to be segmented, as well as allow us to use the probability of correct classification as a metric to determine the quality of the segmentation. We view traditional segmentation as a filter operating on the image that is independent of the classifier, much like the filter methods for feature selection. We propose a new paradigm for segmentation and classification that follows the wrapper methods of feature selection. Our method wraps the segmentation and classification together, and uses the classification accuracy as the metric to determine the best segmentation. By using shape as the classification feature, we are able to develop a segmentation algorithm that relaxes the requirement that the object of interest to be segmented must be homogeneous in some low-level image parameter, such as texture, color, or grayscale. This represents an improvement over other segmentation methods that have used classification information only to modify the segmenter parameters, since these algorithms still require an underlying homogeneity in some parameter space. Rather than considering our method as, yet, another segmentation algorithm, we propose that our wrapper method can be considered as an image segmentation framework, within which existing image segmentation algorithms may be executed. We show the performance of our proposed wrapper-based segmenter on real-world and complex images of automotive vehicle occupants for the purpose of recognizing infants on the passenger seat and disabling the vehicle airbag. This is an interesting application for testing the robustness of our approach, due to the complexity of the images, and, consequently, we believe the algorithm will be suitable for many other real-world applications.  相似文献   

12.
Automated interpretation of complex images requires elaborate knowledge and model-based image analysis, but often needs interaction with an expert as well. This research describes expert interaction with a multiagent image interpretation system using only a restricted vocabulary of high-level user interactions. The aim is to minimize inter- and intra-observer variability by keeping the total number of interactions as low and simple as possible. The multiagent image interpretation system has elaborate high-level knowledge-based control over low-level image segmentation algorithms. Agents use contextual knowledge to keep the number of interactions low but, when in doubt, present the user with the most likely interpretation of the situation. The user, in turn, can correct, supplement, and/or confirm the results of image-processing agents. This is done at a very high level of abstraction such that no knowledge of the underlying segmentation methods, parameters or agent functioning is needed. High-level interaction thereby replaces more traditional contour correction methods like inserting points and/or (re)drawing contours. This makes it easier for the user to obtain good results, while inter- and intra-observer variability are kept minimal, since the image segmentation itself remains under control of image-processing agents. The system has been applied to intravascular ultrasound (IVUS) images. Experiments show that with an average of 2-3 high-level user interactions per correction, segmentation results substantially improve while the variation is greatly reduced. The achieved level of accuracy and repeatability is equivalent to that of manual drawing by an expert.   相似文献   

13.
Automatic ultrasound (US) image segmentation is a difficult task due to the quantity of noise present in the images and the lack of information in several zones produced by the acquisition conditions. In this paper, we propose a method that combines shape priors and image information to achieve this task. In particular, we introduce knowledge about the rib-eye shape using a set of images manually segmented by experts. A method is proposed for the automatic segmentation of new samples in which a closed curve is fitted taking into account both the US image information and the geodesic distance between the evolving curve and the estimated mean rib-eye shape in a shape space. This method can be used to solve similar problems that arise when dealing with US images in other fields. The method was successfully tested over a database composed of 610 US images, for which we have the manual segmentations of two experts.  相似文献   

14.
基于模糊C均值聚类(FCM)的图像分割是应用较为广泛的图像分割方法之一,但是传统的模糊C均值聚类算法都是基于欧氏距离的,对于图像中的噪声是十分敏感的。针对这一局限性,提出一种基于FCM的分块自适应图像分割方法。该方法不仅考虑了噪声不均匀分布对分割结果的影响,而且充分考虑了图像像素的灰度信息和空间信息。通过对含有噪声的自然图像和合成图像的分割试验,我们可以得到,与传统的FCM图像分割算法相比,本文方法能显著提高含有噪声图像的分割质量。  相似文献   

15.
Despite the great progress on interactive image segmentation, image co-segmentation, 2D and 3D segmentation, there is still no workable solution to the problem: given a set of calibrated or un-calibrated multi-view images (say, more than 40 images), by interactively cutting 3  4 images, can the foreground object of the rest images be quickly cutout automatically and accurately? In this paper, we propose a non-trivial engineering solution to this problem. Our basic idea is to integrate 3D segmentation with 2D segmentation so as to combine their advantages. Our proposed system iteratively performs 2D and 3D segmentation, where the 3D segmentation results are used to initialize 2D segmentation and ensure the silhouette consistency among different views and the 2D segmentation results are used to provide more accurate cues for the 3D segmentation. The experimental results show that the proposed system is able to generate highly accurate segmentation results, even for some challenging real-world multi-view image sequences, with a small amount of user input.  相似文献   

16.
基于OTSU准则及图像熵的局部递归分割算法研究   总被引:7,自引:5,他引:2  
韩建涛  姜卫东  陈曾平 《红外技术》2004,26(6):89-92,96
在图像分割中,门限的选取至关重要,本文在Otsu门限选择准则的基础上,研究了一种基于图像熵的局部递归的门限选择及分割算法,该算法在图像背景不均或图像不是简单的单峰、双峰图像的情况下可以有效的分割,分割后图像的细节更加丰富,有利于分割后的特征提取。对几种不同的目标进行了实验,获得了较好的实验结果。  相似文献   

17.
Image segmentation refers to the process to divide an image into meaningful non-overlapping regions according to human perception, which has become a classic topic since the early ages of computer vision. A lot of research has been conducted and has resulted in many applications. While many segmentation algorithms exist, there are only a few sparse and outdated summarizations available. Thus, in this paper, we aim to provide a comprehensive review of the recent progress in the field. Covering 190 publications, we give an overview of broad segmentation topics including not only the classic unsupervised methods, but also the recent weakly-/semi-supervised methods and the fully-supervised methods. In addition, we review the existing influential datasets and evaluation metrics. We also suggest some design choices and research directions for future research in image segmentation.  相似文献   

18.
Because of too much dependence on prior assumptions, parametric estimation methods using finite mixture models are sensitive to noise in image segmentation. In this study, we developed a new medical image segmentation method based on non-parametric mixture models with spatial information. First, we designed the non-parametric image mixture models based on the cosine orthogonal sequence and defined the spatial information functions to obtain the spatial neighborhood information. Second, we calculated the orthogonal polynomial coefficients and the mixing ratio of the models using expectation-maximization (EM) algorithm, to classify the images by Bayesian Principle. This method can effectively overcome the problem of model mismatch, restrain noise, and keep the edge property well. In comparison with other methods, our method appears to have a better performance in the segmentation of simulated brain images and computed tomography (CT) images.  相似文献   

19.
Intensity inhomogeneities in images cause problems in gray-value based image segmentation since the varying intensity often dominates over gray-value differences of the image structures. In this paper we propose a novel biconvex variational model that includes the intensity inhomogeneities to tackle this task. We combine a total variation approach for multi class segmentation with a multiplicative model to handle the inhomogeneities. In our model we assume that the image intensity is the product of a smoothly varying part and a component which resembles important image structures such as edges. Therefore, we penalize in addition to the total variation of the label assignment matrix a quadratic difference term to cope with the smoothly varying factor. A critical point of the resulting biconvex functional is computed by a modified proximal alternating linearized minimization method (PALM). We show that the assumptions for the convergence of the algorithm are fulfilled. Various numerical examples demonstrate the very good performance of our method. Particular attention is paid to the segmentation of 3D FIB tomographical images serving as a motivation for our work.  相似文献   

20.
Image segmentation is a fundamental problem in early computer vision. In segmentation of flat shaded, nontextured objects in real-world images, objects are usually assumed to be piecewise homogeneous. This assumption, however, is not always valid with images such as medical images. As a result, any techniques based on this assumption may produce less-than-satisfactory image segmentation. In this work, we relax the piecewise homogeneous assumption. By assuming that the intensity nonuniformity is smooth in the imaged objects, a novel algorithm that exploits the coherence in the intensity profile to segment objects is proposed. The algorithm uses a novel smoothness prior to improve the quality of image segmentation. The formulation of the prior is based on the coherence of the local structural orientation in the image. The segmentation process is performed in a Bayesian framework. Local structural orientation estimation is obtained with an orientation tensor. Comparisons between the conventional Hessian matrix and the orientation tensor have been conducted. The experimental results on the synthetic images and the real-world images have indicated that our novel segmentation algorithm produces better segmentations than both the global thresholding with the maximum likelihood estimation and the algorithm with the multilevel logistic MRF model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号