首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A two-dimensional multi-fluid model is developed to investigate the effects of dilution gas on microplasma properties and nanoparticle behavior in atmospheric-pressure radio-frequency acetylene discharges. The percentage of dilution gases (argon and helium) percentage varied from 0% to 90%, with the pressure kept constant. Simulation results show that the dilution gas percentage has a significant influence on the spatial distributions of the electron density and temperature, as well as on the formation of nanoparticles in acetylene microplasmas. With increasing dilution gas percentage, the electron density profile changes continuously from being high at the edge to high in the center. A mode transition from a mixed discharge mode with both α regime and drift-ambipolar regime into α regime occurs, which is associated with a sudden decrease in the electron density of the presheaths and an increase in the electron temperature of the bulk plasma. The mode transition point corresponds to the lowest number density ratio of hydrocarbon ions to acetylene. The highest number density ratio is observed at a dilution percentage of 90%, and causes more effective nucleation and coagulation of nanoparticles. Furthermore, owing to the high ionization potential of helium, the transition point moves to a larger dilution gas percentage in ${{\rm{C}}}_{2}{{\rm{H}}}_{2}$/He microplasmas. Finally, the growth of nanoparticles via coagulation is studied.  相似文献   

2.
In this paper, we focused on the identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure. We considered four gas mixtures: 90%Ne-10%Xe, 80%Ne-20%Xe, 70%Ne-30%Xe and 50%Ne-50%Xe at 1.5 Torr. The range of the gap voltage is 150–500 V. A one-dimensional fluid model with multiple species was used in this work, and the metastable state of the atoms as well as the radiation effects were integrated into the model too. The input data changed for each percentage in the gas mixture, and was calculated by BOLSIG+ software. The parameters of particle transport and their rate coefficients strictly depend on the mean electron energy. The results show that the neon ion density is negligible compared to the xenon ion density, mostly in the case of 50%Ne-50%Xe.  相似文献   

3.
The non-chain chemical HF(DF)laser is one of the most powerful electrically-driven lasers operating in mid-infrared,in which SF6-C2H6 mixtures are often used as lasering media.Due to the electronegativity of SF6,the discharge in SF6-C2H6 presents a complicated discharge mode.To achieve reproducible pulsed laser output,pulsed discharge in SF6-C2H6 mixtures is investigated for discharge mode using plane electrodes assisted by array pre-ionization spark pins in cathode surface.Firstly,two modes can be distinguished.One mode is called the selfsustained volume discharge(SSVD),which is characterized by spatial uniformity in the discharge gap and pulse to pulse repeatability.On the contrary,another mode includes random arc passages in the discharge gap and therefore cannot conduct lasering.By varying discharge conditions(gap voltage,gas pressure,etc)two discharge modes are observed.Secondly,the holding scope of the SSVD mode is analyzed for the optimal mixture ratio of 20:1,and the boundary tend of the holding scope of SSVD indicates there exists maximum gas pressure and maximum charging voltage for SSVD.Finally,the peak current of SSVD relates positively to charging voltage,while negatively to gas pressure,from which it is drawn that synchronous electron avalanches initiated by the sliding array overlap spatially into SSVD and thus SSVD is essentially an α ionization avalanche.  相似文献   

4.
Atmospheric dielectric barrier discharges driven by repetitive unipolar narrow pulse excitation are investigated numerically by using one-dimensional fluid models.The one-dimensional simulation focuses on the effects of applied voltage amplitude,pulse repetition frequency,gap width and γ coefficient on the multiple-current-pulse (MCP) discharge.The results indicate that the MCP behavior will lead to the stratification of electron density distribution in axial direction.Traditional MCP manipulating methods,such as reducing the applied voltage amplitude,increasing the applied voltage frequency,adjusting the gap width,cannot regulate MCPs exhibiting in this work.Further analyses reveal that the increasing electric field of the cathode fall region is the basis for the emergence of MCP behavior.  相似文献   

5.
In this paper, E–H mode transition in magnetic-pole-enhanced inductively coupled neon–argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%–100%), operating pressure(1 Pa, 5 Pa, 10 Pa and 50 Pa), and radio frequency(RF) power(5–100 W). An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study. Owing to the lower ionization potential and higher collision cross-section of argon, when its fraction in the discharge is increased, the mode transition occurs at lower RF power; i.e. for 0% argon and1 Pa pressure, the threshold power of the E–H mode transition is 65 W, which reduces to 20 W when the argon fraction is increased. The electron density increases with the argon fraction at afixed pressure, whereas the temperature decreases with the argon fraction. The relaxation length of the low-energy electrons increases, and decreases for high-energy electrons with argon fraction, due to the Ramseur effect. However, the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path. The electron energy probability function(EEPF) profiles are non-Maxwellian in E-mode, attributable to the nonlocal electron kinetics in this mode; however, they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode. The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased, because argon has a much lower excitation potential(11.5 eV) than neon(16.6 eV).  相似文献   

6.
A study of the behaviors of air discharge plasma inside a catalyst’s pores is important to understand the plasma catalysis mechanism; however, few articles have reported the generation characteristics of air plasma in the pores of catalysts. The production of air microdischarge in a pore was studied by a two-dimensional fluid model, mainly focusing on the effect of pore size and applied voltage. The results show that an increase in the pore size in the range of 20–100 μm facilitates the occurren...  相似文献   

7.
The article presents the results of an experimental study and numerical modelling for the formation and development dynamics of a high-voltage transverse nanosecond discharge generated by a slot cathode in an argon medium at a pressure range of 1–10 Torr. Numerical modelling was carried out under similar experimental conditions for the processes of formation and propagation of ionisation waves, electron density distribution, excited atom and average electron energy in the discharge gap, including the cavity inside the cathode. At a pressure of p = 1 Torr, a classical version of a high-voltage discharge is demonstrated to take place with no penetration of the plasma into the cathode cavity and no observed hollow cathode effect. An increase in gas pressure to 5 Torr leads to a penetration of plasma into the cathode cavity with the formation of a cathodic potential drop (CPD) region. Electrons emitted from the side surfaces of the cavity pass through the CPD region without collisions, oscillate inside the cathode cavity; the hollow cathode effect is fully manifested. At р = 10 Torr, the modelling results qualitatively coincide with the results at р = 5 Torr; in this case, however, hardly any accelerated electrons are observed in the gap between the electrodes, due to their energetic relaxation both inside the cathode cavity and when exiting from it. In both cases, the plasma structure formed at the exit of the cathode cavity involves a concentration of charged particles an order of magnitude higher than that in the rest of the gap, leading to a self-limiting discharge current effect. The results of the numerical modelling are in good agreement with experimental data.  相似文献   

8.
To understand the discharge characteristics under a gap of micrometers,the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a microscale gap of 3–50 μm in air.The effect of the needle radius and the gas pressure on the discharge characteristics are tested.The results show that when the gap is larger than 10 μm,the relation between the breakdown voltage and the gap looks like the Paschen curve;while below 10 μm,the breakdown voltage is nearly constant in the range of the tested gap.However,at the same gap distance,the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen's law.The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge.A simple model is used to explain the non-normality of breakdown in the micro-gaps.The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.  相似文献   

9.
Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.  相似文献   

10.
The coaxial surface wave linear plasma with preeminent axial uniformity is developed with the 2.45 GHz microwave generator. By optical emission spectroscopy, parameters of the argon linear plasma with a length over 600 mm are diagnosed under gas pressure of 30 and 50 Pa and different microwave powers. The spectral lines of argon and Hβ (486.1 nm) atoms in excited state are observed for estimating electron excitation temperature and electron density. Spectrum bands in 305–310 nm of diatomic OH (${{\rm{A}}}^{2}{{\rm{\Sigma }}}^{+}-{{\rm{X}}}^{2}{{\rm{\Pi }}}_{{\rm{i}}}$) radicals are used to determine the molecule rotational temperature. Finally, the axial uniformity of electron density and electron excitation temperature are analyzed emphatically under various conditions. The results prove the distinct optimization of compensation from dual powers input, which can narrow the uniform coefficient of electron density and electron excitation temperature by around 40% and 22% respectively. With the microwave power increasing, the axial uniformity of both electron density and electron excitation temperature performs better. Nevertheless, the fluctuation of electron density along the axial direction appeared with higher gas pressure. The axial uniformity of coaxial surface wave linear plasma could be controlled by pressure and power for a better utilization in material processing.  相似文献   

11.
Stable operations of single direct current(DC) discharge, single radio frequency(RF) discharge and DC?+?RF hybrid discharge are achieved in a specially-designed DC enhanced inductivelycoupled plasma(DCE-ICP) source. Their plasma characteristics, such as electron density,electron temperature and the electron density spatial distribution profiles are investigated and compared experimentally at different gas pressures. It is found that under the condition of single RF discharge, the electron density distribution profiles show a ‘convex' shape and ‘saddle' shape at gas pressures of 3 m Torr and 150 m Torr respectively. This result can be attributed to the transition of electron kinetics from nonlocal to local kinetics with an increase in gas pressure.Moreover, in the operation of DC?+?RF hybrid discharge at different gas pressures, the DC discharge has different effects on plasma uniformity. The plasma uniformity can be improved by modulating DC power at a high pressure of 150 m Torr where local electron kinetics is dominant,whereas plasma uniformity deteriorates at a low pressure of 3 m Torr where nonlocal electron kinetics prevails. This phenomenon, as analyzed, is due to the obvious nonlinear enhancement effect of electron density at the chamber center, and the inherent radial distribution difference in the electron density with single RF discharge at different gas pressures.  相似文献   

12.
The gas flow in the neutralization region affects the neutralization efficiency as well as the beam transition efficiency of whole neutral beam injector, which will be applied as a high power auxiliary heating and non-inductive current driver system for the Experimental Advanced Superconducting Tokamak (EAST). The neutralization region of EAST neutral beam injector includes not only the gas cell neutralizer in traditional sense, but also part of the ion source downstream the electrode grid, the gate valve, and the transitional piping and fitting. The gas flow in this neutralization region has been modeled and researched using an adjusted Direct Simulation Monte Carlo code to understand the formation mechanism of gas target thickness, which determines the neutralization efficiency. This paper presents the steady-state, viscous and transition region flowfields, the gas density distribution and the various centerline profiles including Knudsen number, temperature, pressure and axial velocity by injected the deuterium gas from the arc chamber and neutralizer, respectively. The target thickness in the neutralization region as a function of gas inlet quantity is also given in the absence of beam for future operation of EAST neutral beam injector.  相似文献   

13.
Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species O3, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high SIE is not favorable for ozone production.  相似文献   

14.
15.
X-ray emission from neon plasma produced in Sahand Filippov type plasma focus device is investigated. Detecting system used in our experiments is a five channel pin diode detector. Soft X-ray emissions from neon gas at different charging voltages and working gas pressures are studied and optimum condition for production of soft X-ray for Sahand plasma focus facility is obtained. Results show that for every working pressure there is a charging voltage at which the average soft X-ray yield is maximum and this optimum charging voltage increases with increasing gas pressure. For 0.25, 0.50 and 0.75 Torr neon the optimum voltages are 12, 13 and 16 kV respectively. The highest average soft X-ray yields produced at 0.50 Torr which is about 35.87 ± 1.18 J. Also soft X-ray production decreased after a certain pressure which for our experiments is 0.50 Torr. The variation of relative hard X-ray yield with charging voltage and working gas pressure is also investigated. The results show that 0.50 Torr is also the best operating gas pressure for optimum hard X-ray production in Sahand Filippov type plasma focus device.  相似文献   

16.
The current sheath velocity in 0.25 Torr gas pressure of Filippov type plasma focus is studied experimentally.By using two tridimensional magnetic probes on top of the anode surface,the current sheath velocity is measured for argon,oxygen and nitrogen.Additionally,the effect of charging voltage on the current sheath velocity is studied in both axial and radial phases.We found that,the maximum current sheath velocities at both radial and axial phases are respectively 4.33 ± 0.28(cm/μs) and 3.92 ± 0.75(cm/μs) with argon as the working gas at 17 kV.Also,the minimum values of current sheath velocity are 1.48 ± 0.15(cm/μs) at the radial phase and 1.14 ± 0.09(cm/μs) at the axial phase with oxygen at 12 kV.The current sheath velocity at the radial phase is higher than that at the axial phase for all gases and voltages.In this study,variation of the full width half maximum(FWHM) of magnetic probe signals with voltage is investigated for different gases at radial and axial phases.  相似文献   

17.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

18.
The physical properties of Ne–Xe DC glow discharges at low pressure are reported for a gap length of 1 cm for the first time in the literature. The model deals specifically with the first three moments of Boltzmann's equation and includes the radiation processes and metastable atom densities. The spatio-temporal distributions of the electron and neon and xenon ion densities, the neon and xenon metastable atom densities, the electric potential and the electric field as well as the mean electron energy are presented at 1.5 Torr and 250 V. The current–voltage characteristic is shown at 3 Torr, and it is compared with previous work for pure neon gas. The model is validated theoretically and experimentally in the case of pure gas.  相似文献   

19.
In this paper, we present a theoretical study on the discharge characteristics of radio-frequency discharges at atmospheric pressure driven by a higher frequency of 40.68 MHz while the electrode gap is altered. Based on the analytical equations and simulation data from a one-dimensional fluid model, an optimal gap between electrodes, at which the largest electron density is obtained, can be observed under a constant power condition; however, as the electrode gap increases the time-averaged electron temperature decreases, and the underpinning physics is also discussed based on the simulation results. This study indicates that at a constant power by choosing an appropriate electrode spacing, the rf discharge can be effectively optimized at atmospheric pressure.  相似文献   

20.
The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge(DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area,and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27–300℃ but becomes obvious in the range of 300–500℃. A model was established using which the energy injection can be easily predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号