首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amounts of nuclear materials in the Li Cl-KCl salt in pyroprocessing have to be analyzed to prevent the diversion of the nuclear material. An alternative method to the chemical analysis has been pursued, and laser-induced breakdown spectroscopy(LIBS) is one candidate. In the present work, an in situ and quantitative analysis method of electro-recovery(ER) salt was proposed and demonstrated by using LIBS combined with dipstick sampling. Two types of simulated salt samples were prepared: ER salt sample and salt obtained from the dipstick sampling, and pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser with a wavelength of 532 nm was focused on the salt to generate plasma. The plasma emission was measured by using an Echelle spectrometer with a resolution of 0.01 nm in conjunction with an Intensified Charge-Coupled Detector camera. The U and other rare earth peaks in the spectra were identified. The best Limit of Detection and Root Mean Square Error of Calibration of U were 38 ppm and 0.0203 wt%,respectively. Our work shows that the U in the pyroprocessing ER salt can be monitored with LIBS.  相似文献   

2.
In this paper the spectral enhancement of laser-induced breakdown spectroscopy (LIBS) for copper plasma in the presence of a magnetic field is investigated and the temporal-and spatial-resolved plasma emission spectra are analyzed. Experimental results show that the copper plasma atomic and ion spectra have been enhanced in the presence of the external magnetic field. In addition, the Cu I 521.82 nm spectral intensity evolution with delay time appears to have a double peak around the delay time of 2 μs, but that of Cu II 507.57 nm has a sharp decrease because of the electron-atom three body recombination process. The plasma temperature with magnetic confinement is lower than that of the case in the absence of magnetic fields. Finally, the spectral enhancement mechanisms of laser induced breakdown spectroscopy with magnetic confinement are analyzed.  相似文献   

3.
The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS. It works under laser-plasma triggered spark discharge mode, and shows its ability to enhance spectral emission intensity. This work uses a femtosecond laser as the light source, since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser, meanwhile, the study on femtosecond LIBS with spark discharge is rare. Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies. The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone. And, the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy. In addition, at low laser energy, there was an obvious delay on the discharge time compared with high laser energy, and the discharge time with positive voltage was different from that with negative voltage.  相似文献   

4.
Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy   总被引:2,自引:0,他引:2  
Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various enviromnents. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed. A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4 #s. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.  相似文献   

5.
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy (LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem, this paper investigated a combination of time-resolved LIBS and convolutional neural networks (CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R2c=0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network (ANN), showing R2v=0.6318 and the root mean square error of validation (RMSEV)=0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R2v=0.7366 and RMSEV=0.7855. These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K. However, due to limited calibration samples, the two-dimensional models presented over-fitting. The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R2v=0.9968 and RMSEV=0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil.  相似文献   

6.
Laser-induced breakdown spectroscopy(LIBS) has been developed to in situ diagnose the chemical compositions of the first wall in the EAST tokamak. However, the dynamics of optical emission of the key plasma-facing materials, such as tungsten, molybdenum and graphite have not been investigated in a laser produced plasma(LPP) under vacuum. In this work, the temporal and spatial dynamics of optical emission were investigated using the spectrometer with ICCD.Plasma was produced by an Nd:YAG laser(1064 nm) with pulse duration of 6 ns. The results showed that the typical lifetime of LPP is less than 1.4 μs, and the lifetime of ions is shorter than atoms at ~10~(-6)mbar. Temporal features of optical emission showed that the optimized delay times for collecting spectra are from 100 to 400 ns which depended on the corresponding species. For spatial distribution, the maximum LIBS spectral intensity in plasma plume is obtained in the region from 1.5 to 3.0 mm above the sample surface. Moreover, the plasma expansion velocity involving the different species in a multicomponent system was measured for obtaining the proper timing(gate delay time and gate width) of the maximum emission intensity and for understanding the plasma expansion mechanism. The order of expansion velocities for various species is V_C~+ V_H V_(Si)~+ V_(Li) V_(Mo) V_W.These results could be attributed to the plasma sheath acceleration and mass effect. In addition, an optimum signal-to-background ratio was investigated by varying both delay time and detecting position.  相似文献   

7.
Laser-induced breakdown spectroscopy(LIBS) is a powerful analytical tool for realtime diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma fusion devices. Recently,we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study,we applied polarizationresolved LIBS(PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium(Al)(as a substitute for Be) and the first wall materials tungsten(W) and molybdenum(Mo) to investigate polarized continuum emission and signal-tobackground ratio(SBR). A Nd:YAG laser with first,second and third harmonics was used to produce plasma. The effects of the laser polarization plane,environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer(i.e. LIBS)were compared with those obtained with a polarizer(PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus' law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS,thereby enhancing the reliability of LIBS for quantitative analyses.A comparison of Al,Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.  相似文献   

8.
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.  相似文献   

9.
The wavelength dependence of laser induced breakdown spectroscopy(LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations.Compared with the 1064 nm wavelength laser ablation,the 266 nm wavelength laser ablation has less thermal effects,resulting in a better crater morphology on the coal pellets.Besides,the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding,resulting in a higher carbon line intensity and better signal reproducibility.The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength.The partial least square(PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS.The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.  相似文献   

10.
This work reports that the intensity ratio of spectral lines having similar self-absorption characteristics during laser induced breakdown spectroscopy(LIBS) analysis can become nearly constant over a wide range of irradiation conditions if the intensities are integrated over a sufficiently long time. It is shown that the plasma temperature and intensity ratio of these spectral lines have temporal similarity. The spectral lines with similar self-absorption properties may be selected to improve the accuracy and consistency of LIBS analysis results under an environment with fluctuating measurement conditions.  相似文献   

11.
This work introduces the branching ratio(BR) method for determining relative spectral responses,which are needed routinely in laser induced breakdown spectroscopy(LIBS). Neutral and singly ionized Ti lines in the 250–498 nm spectral range are investigated by measuring laser-induced micro plasma near a Ti plate and used to calculate the relative spectral response of an entire LIBS detection system. The results are compared with those of the conventional relative spectral response calibration method using a tungsten halogen lamp, and certain lines available for the BR method are selected. The study supports the common manner of using BRs to calibrate the detection system in LIBS setups.  相似文献   

12.
Detection of oil pollution in soil has been carried out using laser-induced breakdown spectroscopy(LIBS). A pulsed neodymium-doped yttrium aluminum garnet(Nd:YAG) laser(1,064 nm, 8 ns, 200 mJ) was focused onto pelletized soil samples. Emission spectra were obtained from oil-contaminated soil and clean soil. The contaminated soil had almost the same spectrum profile as the clean soil and contained the same major and minor elements. However, a C–H molecular band was clearly detected in the oil-contaminated soil, while no C–H band was detected in the clean soil. Linear calibration curve of the C–H molecular band was successfully made by using a soil sample containing various concentrations of oil. The limit of detection of the C–H band in the soil sample was 0.001 mL/g. Furthermore, the emission spectrum of the contaminated soil clearly displayed titanium(Ti) lines, which were not detected in the clean soil. The existence of the C–H band and Ti lines in oil-contaminated soil can be used to clearly distinguish contaminated soil from clean soil. For comparison, the emission spectra of contaminated and clean soil were also obtained using scanning electron microscope-energy dispersive X-ray(SEM/EDX) spectroscopy,showing that the spectra obtained using LIBS are much better than using SEM/EDX, as indicated by the signal to noise ratio(S/N ratio).  相似文献   

13.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250℃. The measured molecular emission was AlO(△ν=0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

14.
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy (LIBS) was investigated experimentally.An Al target was ablated to produce laser-induced plasma.The Al target was uniformly heated to a maximum of 250 ℃.The measured molecular emission was AlO (△υ =0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AIO increased as the temperature of the A1 target increased.In addition,a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures.The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the A1 target increased;also,the simulated ablated depth increased.Therefore,an increase in the initial A1 target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater.The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.  相似文献   

15.
Spectral intensity,electron temperature and density of laser-induced plasma(LIP) are important parameters for affecting sensitivity of laser-induced breakdown spectroscopy(LIBS).Increasing target temperature is an easy and feasible method to improve the sensitivity.In this paper,a brass target in a temperature range from 25℃ to 200℃ was ablated to generate the LIP using femtosecond pulse.Time-resolved spectral emission of the femtosecond LIBS was measured under different target temperatures.The results showed that,compared with the experimental condition of 25℃,the spectral intensity of the femtosecond LIP was enhanced with more temperature target.In addition,the electron temperature and density were calculated by Boltzmann equation and Stark broadening,indicating that the changes in the electron temperature and density of femtosecond LIP with the increase of the target temperature were different from each other.By increasing the target temperature,the electron temperature increased while the electron density decreased.Therefore,in femtosecond LIBS,a hightemperature and low-density plasma with high emission can be generated by increasing the target temperature.The increase in the target temperature can improve the resolution and sensitivity of femtosecond LIBS.  相似文献   

16.
Laser-induced breakdown spectroscopy(LIBS) is a promising analytical spectroscopy technology based on spectroscopic analysis of the radiation emitted by laser-produced plasma.However, for quantitative analysis by LIBS, the so-called self-absorption effects on the spectral lines, which affect plasma characteristics, emission line shapes, calibration curves, etc, can no longer be neglected. Hence, understanding and determining the self-absorption effects are of utmost importance to LIBS research. The purpose of this review is to provide a global overview of self-absorption in LIBS on the issues of experimental observations and adverse effects,physical mechanisms, correction or elimination approaches, and utilizations in the past century.We believe that better understanding and effective solving the self-absorption effect will further enhance the development and maturity of LIBS.  相似文献   

17.
Manganese (Mn) is an important industrial mineral. Information about the chemical and phase constitution along with the concentration of impurities presented in Mn ore is compulsory in assessing its suitability for different applications. We performed the qualitative and quantitative analysis of low-grade Mn ore (LGMO) using laser-induced breakdown spectroscopy (LIBS) in conjunction with x-ray diffraction (XRD), x-ray fluorescence (XRF) and scanning electron microscopy (SEM) coupled with energy dispersive x-ray electron spectroscopy (EDS). The optical emission spectra of the LGMO sample displayed the presence of Mn, Si, Ca, Fe, Al, Mg, V, Ti, Sr, Ni, Na, Ba and Li. The plasma parameters, electron temperature and number density were estimated using the Boltzmann plot and Stark broadening line profile methods and were found to be 7500 K±750 K and 8.18±0.8×1017 cm−3, respectively. Quantitative analysis was performed using the calibration-free LIBS (CF-LIBS) method and its outcome along with XRD, XRF and SEM-EDS data showed almost analogous elemental composition, while the LIBS method gave acceptably precise elemental analysis by detecting the low atomic number element Li besides V and Sr. The results obtained using LIBS for the LGMO exhibited its ability as a powerful analytical tool and XRF, XRD and SEM-EDS as complementary methods for the compositional analysis of complex low-grade mineral ore.  相似文献   

18.
Laser induced breakdown spectroscopy(LIBS) provides a useful technique for food security as well as determining nutrition contents.In this paper,optical emission studies of laser induced plasma on commercial tea samples were carried out.The spectral intensities of Mg,Mn,Ca,Al,C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied.In addition,the relative concentrations of six microelements,i.e.,Mg,Mn,Ca,Al,Na and K,were analyzed semi-quantitatively as well as H,for four kinds of tea samples.Moreover,the plasma parameters were explored,including electron temperature and electron number density.The electron temperature and electron number density were around 11000 K and 10~(17) cm~(-3),respectively.The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples.  相似文献   

19.
Laser-induced breakdown spectroscopy(LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions.The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers.To prevent the interference from metallic elements,three atomic emission lines(C I 247.86 nm,H I 656.3 nm,and O I 777.3 nm) and one molecular line C–N(0,0) 388.3 nm were used.The cluster analysis results were obtained through an iterative process.The Davies–Bouldin index was employed to determine the initial number of clusters.The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion.With the proposed approach,the classification accuracy for twenty kinds of industrial polymers achieved 99.6%.The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.  相似文献   

20.
The plasma shielding effect is one of the major weaknesses of laser-induced breakdown spectroscopy(LIBS) as it causes non-linearity in signal strength. Although LIBS is typically carried out in constant laser energy, this non-linearity causes a reduction in sensitivity. In this work, we systematically examine laser-induced plasma, formed by two different excitation source modes, i.e. single pulse(SP)-excitation and single-beam-splitting double-pulse(SBSDP)-excitation over Zr-2.5% Nb alloy. The two most important plasma parameters influencing the emission line intensity, plasma temperature(T_e) and electron density(N_e) were studied and compared for both modes of laser excitation. Comparison of the results conclusively demonstrates that due to the splitting of the laser energy in the SBS-DP mode, the plasma shielding effect is significantly reduced. The reduced plasma shielding translates to an increased laser–sample coupling under SBS-DP mode. Temporal imaging of the total intensity of the laserinduced plasma in both excitation modes was also studied. The study shows how the plasma shielding effect can be reduced to improve the analytical quality of the LIBS methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号