首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为充分利用振动信号进行故障辨识,提出一种基于集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)奇异值熵判据的滚动轴承故障诊断方法。首先,对滚动轴承的振动信号进行EEMD分解获得若干个本征模态函数(intrinsic mode function,简称IMF),并根据一种IMF分量故障信息含量的评价指标(即峭度、均方差和欧氏距离)选出能够表征原始信号状态的分量进行信号重构;其次,利用奇异值分解技术对重构信号进行处理,结合信息熵算法求取其奇异值熵;最后,利用奇异值熵的大小判断滚动轴承的故障类别。用美国西储大学滚动轴承振动信号对所述方法进行验证的结果表明,相比传统的EMD奇异值熵故障诊断方法,本方法能够清晰的划分出滚动轴承不同工作状态的类别特征区间,而且具有更高的故障诊断精度。  相似文献   

2.
针对滚动轴承早期微弱故障难以检测的问题,提出一种基于变分模态分解(Variational mode decompsition,VMD)的自适应随机共振轴承故障检测方法。首先对滚动轴承的振动故障信号进行VMD分解,得到有限个本征模态函数(Intrinsic mode function,IMF),选取包含故障特征的IMF分量并进行信号重构;将重构信号输入随机共振系统,采用以改进加权峭度为目标函数的量子粒子群算法,优化系统结构参数,得到最佳共振输出,从而实现降噪和增强故障特征的目的,最后通过输出信号的自相关包络谱提取故障特征频率。实测数据的分析结果验证了该方法的有效性和优势。  相似文献   

3.
针对轮齿振动信号识别诊断困难的问题,提出以自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,简称CEEMDAN)排列熵为敏感特征量,通过支持向量机(support vector machine,简称SVM)进行模式识别,实现螺旋锥齿轮故障辨识的方法。首先,将振动信号进行CEEMDAN,得到一系列从高频到低频的内禀模态函数(intrinsic mode function,简称IMF),利用相关系数计算各IMF分量与原始信号的相关程度,结合信噪比的大小进行含主要故障信息的IMF分量优选;其次,采用重叠组合法对排列熵计算过程中的关键参数——嵌入维数和时延进行优选;最后,以优选IMF的排列熵值组成特征向量,训练多分类SVM进行螺旋锥齿轮故障辨识。将该方法用于3种不同程度螺旋锥齿轮断齿故障的诊断识别,并与基于集总经验模态分解排列熵、经验模态分解排列熵方法进行比较,结果表明,基于CEEMDAN排列熵的故障诊断方法可以更加准确地识别螺旋锥齿轮的故障类型。  相似文献   

4.
针对滚动轴承振动信号非平稳非线性的特征,提出一种基于加权排列熵和差分进化算法优化极限学习机(DE-ELM)的滚动轴承故障诊断方法。首先利用自适应噪声的完全集合经验模态分解处理轴承振动信号得到固有模态函数(IMF),然后计算主要IMF分量的加权排列熵组成故障特征向量,最后利用差分优化算法(DE)优化极限学习机隐含层输入权值和偏置,并将故障特征向量作为DE-ELM的输入。实验证明,加权排列熵能够精确提取故障特征,DE-ELM算法能有效提高故障分类精度。与多种方法相比,该方法更加准确可靠。  相似文献   

5.
针对滚动轴承故障信号具有非线性、非平稳性特点导致的故障类别难以辨识问题,提出一种基于经验小波变换、多尺度排列熵、GG(Gath-Geva,简称GG)聚类算法相结合的故障诊断方法。首先,采用经验小波变换对滚动轴承的原始信号进行分解、得到若干个固有模态分量,初步提取滚动轴承的状态特征值;其次,通过相关性分析选择最优模态分量,并在多个尺度下计算其排列熵值;最后,运用主成分分析对高维熵值特征向量进行可视化降维、并输入到GG聚类算法中,实现对滚动轴承的故障辨识。与其他模式组合方法进行比较的结果表明,本研究提出的故障辨识方法具有聚类结果的类内紧致性更好的优点。  相似文献   

6.
提出了一种以经验小波变换(empirical wavelet transform,简称EWT)和多尺度熵相结合的高压断路器振动信号的特征向量提取和故障诊断的分析方法。首先,将高压断路器的振动信号进行经验小波变换,得到内禀模态函数(intrinsic mode function,简称IMF),选择相关系数较大的IMF进行重构;其次,提取重构信号的多尺度熵作为表征断路器状态的特征向量,采用归一化的方法对特征向量进行预处理并以此作为支持向量机(support vector machine,简称SVM)的输入向量进行分类训练;最后,将测试样本信号故障特征输入训练好的SVM,在SVM核函数参数进行网格算法优化的基础上进行状态识别及分类。实验结果表明,该方法可快速准确地检测高压断路器故障,实现了断路器故障的状态识别。  相似文献   

7.
《轴承》2017,(5)
为精确提取滚动轴承振动信号的故障特征,提出了一种基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法。首先,针对多尺度排列熵算法的参数确定问题,综合考虑参数之间的交互影响,基于遗传算法与微粒群算法对参数进行优化;然后,利用参数优化多尺度排列熵对滚动轴承振动信号进行特征提取,并通过模糊C均值聚类确定标准聚类中心;最后,采用Euclid贴近度对故障样本进行分类。通过分类系数与平均模糊熵检验聚类效果,证明了多尺度排列熵参数优化的有效性;与单一尺度排列熵、样本熵结合模糊C均值聚类方法的对比分析表明,基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法具有更高的故障识别率和更广阔的适用范围。  相似文献   

8.
针对轴承振动信号的非线性、非平稳性,提出一种基于多尺度本征模态排列熵和模拟退火优化支持向量机(Simulated annealing-support vector machine,SA-SVM)的列车轴承故障诊断方法。该方法首先对获取的轴承振动信息进行小波降噪处理,接着通过集合经验模态分解(Ensemble empirical mode decompose,EEMD)将去噪信号分解成若干个平稳的本征模态函数(Intrinsic mode function,IMF),并提取多尺度本征模态排列熵作为SVM输入,在用样本训练SVM时,用SA对SVM的核函数进行优化,提高其分类准确率,最终实现智能化故障诊断。试验结果表明,基于多尺度本征模态排列熵和SA-SVM的列车轴承故障诊断方法能准确识别列车轴承故障类型,具有重要的实际工程应用价值。  相似文献   

9.
针对板带轧机轴承工作环境恶劣、保持架与滚动体极易损坏、信号噪声大、识别困难以及实际工况对诊断速度要求高等问题,首先,提出粒子群优化变分模态分解(particle swarm optimization-variational mode decomposition,简称PSO-VMD)和多元多尺度排列熵(multivariate multiscale permutation entropy,简称MMPE)的故障诊断方法,并结合粒子群优化支持向量机(particle swarm optimization-support vector machine,简称PSO-SVM)实现故障分类;其次,轴承振动信号经VMD处理为若干模态分量(intrinsic mode functions,简称IMF),选最优分量进行包络分析;然后,针对轧机轴承垂直水平轴向振动差别较大且受较大径向力与轴向力的特点,采用MMPE并考虑3维振动信号的4个分量的MMPE值与时域指标组成特征向量;最后,基于PSO-SVM模型对方法的有效性进行验证。计算和实验结果与集合经验模态分解(ensemble empirical mode ...  相似文献   

10.
为稳定提取滚动轴承故障特征,提出一种基于变分模态分解和多尺度排列熵的故障特征提取方法,并采用GK模糊聚类对轴承故障进行识别分类。首先对滚动轴承振动信号进行变分模态分解,得到包含故障特征信息的模态分量;进而利用多尺度排列熵量化各模态分量的故障特征,取各模态分量多尺度排列熵的平均值作为特征向量;最后通过GK模糊聚类分析获得故障样本的标准聚类中心,采用欧式贴近度进行故障识别分类。将所提方法应用于滚动轴承实验数据,通过分类系数与平均模糊熵对分类效果进行检验,并与经验模态分解多尺度排列熵结合GK模糊聚类的方法进行对比,结果表明,所提方法具有更好的分类性能,其故障诊断精度更高。  相似文献   

11.
综合量子粒子群优化算法(quantum particle swarm optimization,简称QPSO)的全局搜索能力与隐马尔科夫模型(hidden Markov model,简称HMM)良好的时间序列分类能力,提出一种基于QPSO?HMM的滚动轴承故障程度辨识方法,并利用实测振动信号对该方法的性能进行验证。首先,采用变分模态分解对实测振动信号进行分解,并用奇异值分解进行信号特征提取;其次,利用QPSO算法和样本信号对HMM进行训练;最后,将测试信号输入训练得到的HMM中进行滚动轴承故障程度辨识。结果表明,该算法解决了HMM的参数估计局部最优化问题,对滚动轴承不同故障程度的辨识准确率较高。  相似文献   

12.
滚动轴承处于早期故障阶段时,故障冲击特征成分难以提取,为了从轴承故障振动信号中提取特征参数,对轴承故障振动信号进行变分模态分解(Variational Mode Decomposition,VMD),得到若干个本征模态分量(IMFs),计算各个IMF的能量熵与样本熵,并利用主成分分析方法(PCA)对其进行特征融合。最后利用粒子群算法(PSO)优化的支持向量机(SVM)对融合特征进行故障模式识别。轴承故障实验分析结果表明,所提方法能够有效实现滚动轴承故障诊断。  相似文献   

13.
滚动轴承是工程设备中的关键部件,对滚动轴承进行故障识别方法研究有重要的意义。为了解决滚动轴承振动信号分析能力薄弱的问题,提出了一种基于变分模态分解(Variational mode decomposition,VMD)与最小二乘支持向量机(Least square support vector machine,LSSVM)的滚动轴承故障识别方法。以凯斯西储大学滚动轴承实验数据为研究对象,获取4类故障7种滚动轴承状态实验振动数据。进行VMD分解,得出最佳分解本征模态函数(Intrinsic mode function,IMF)个数4,然后计算4个IMF样本熵(Sample entropy,SE)得到相应特征量,输入LSSVM模型进行状态识别。实验表明,基于VMD-LSSVM的方法比EMD(Empirical mode decomposition)-HMM(Hidden Markov model)和EMD-LSSVM方法有更高的识别率。  相似文献   

14.
针对设备故障信号的非线性、非平稳特征,提出了基于快速变分模态分解、参数优化多尺度排列熵和特征加权GK模糊聚类的故障诊断方法。首先,在变分模态分解的基础上,引入快速迭代的思想,提出快速变分模态分解方法,以减少算法运行时间与迭代次数;其次,针对多尺度排列熵算法的参数确定问题,综合考虑参数之间的交互影响,提出一种基于多作用力微粒群算法的参数优化方法,并通过快速变分模态分解和参数优化多尺度排列熵算法提取故障特征;之后,考虑到样本特征矢量中各维特征在聚类过程中的贡献不同,提出基于ReliefF特征加权的GK模糊聚类方法,由特征加权GK模糊聚类确定标准聚类中心,通过择近原则实现故障模式的分类识别;最后,以在机械故障试验平台上采集到的轴承不同故障类型的振动信号为研究对象,应用所提方法进行分析。结果表明,相对于改进前的变分模态分解、多尺度排列熵和GK模糊聚类方法,本文所提方法不仅能够有效提取故障特征,还能准确实现故障模式的分类识别,而且故障识别率得到提高。  相似文献   

15.
《机电工程》2021,38(5)
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。  相似文献   

16.
将奇异值分解(singular value decomposition,简称SVD)与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)进行结合,提出一种适用于滚动轴承弱故障状态描述的敏感特征提取方法。为提高信号故障信息的提取质量,对采集信号进行相空间重构得到一种Hankel矩阵。根据该矩阵的奇异值差分谱,确定降噪阶次进行SVD降燥。用EEMD分解降噪后的信号可获得11个本征模态函数(intrinsic mode function,简称IMF)和1个余项。依据建立的峭度-均方差准则,筛选出一个能够有效描述故障状态的敏感IMF分量,计算其相应的Teager能量算子(Teager energy operator,简称TEO),对此TEO进行Fourier变换,实现了对滚动轴承弱故障模式的有效辨识。用美国凯斯西储大学公开的滚动轴承故障信号对所建立的方法与传统EEMD-Hilbert法和EEMD-TEO方法进行对比,结果表明:经本方法提取的敏感特征能准确突显滚动轴承故障频率发生的周期性冲击,可准确识别其故障类型。  相似文献   

17.
《轴承》2017,(4)
提出了一种基于多尺度基本熵的CFS聚类滚动轴承故障诊断方法,首先使用多尺度基本熵对滚动轴承振动信号进行多尺度分解,然后使用PCA模型对得到的多尺度熵值特征向量进行降维操作,最后选择第1~2主成分作为CFS聚类算法的输入进行滚动轴承的故障诊断。试验结果表明:在聚类效果相同的情况下,多尺度基本熵的计算效率高于多尺度排列熵模型,并且CFS聚类算法的故障识别效果较好。  相似文献   

18.
针对滚动轴承故障诊断中非平稳振动信号下的有效故障特征提取问题,提出一种基于自适应局部迭代滤波、多元多尺度排列熵和有向无环图算法支持向量机的滚动轴承故障诊断方法。自适应局部迭代滤波通过构建自适应滤波函数,能够有效抑制噪声和模态混叠,经自适应分解后得到若干本征模态函数。仿真结果表明其效果优于经验模态分解。然后利用多元多尺度排列熵对包含显著故障信息的本征模态函数进行信息融合和特征提取,组成故障状态特征集。采用主成分分析对故障状态特征集进行降维,随机抽取部分样本带入有向无环图算法支持向量机中进行训练,其它则作为测试样本进行故障识别和诊断。试验故障诊断结果表明:自适应局部迭代滤波下多元多尺度排列熵优于多个本征模态函数下的多尺度排列熵和经验模态分解下的多元多尺度排列熵;本文方法能准确地识别滚动轴承不同的故障类型及故障程度。  相似文献   

19.
由于齿轮箱振动信号的非平稳非线性等问题加大了故障诊断的难度,本文提出了一种基于互补集合经验模态分解(CEEMD)和多尺度排列熵(MPE)、样本熵(SE)相结合的故障特征提取方法。首先对齿轮箱振动信号进行互补集合经验模态分解,并根据相关系数原则对各模态分量进行筛选和重构,再利用多尺度排列熵对筛选出的模态分量进行特征提取,同时对重构后的信号提取其样本熵作为特征值;最后将提取出的多种故障特征融合输入到高斯过程分类器中进行实验验证,实验结果表明该方法提取齿轮箱振动信号的故障特征是有效的,高斯过程分类能快速准确地分辨出故障结果。  相似文献   

20.
针对滚动轴承振动信号的低信噪比、高复杂性及非平稳特性,提出基于经验模态分解、多尺度熵算法与支持向量机的故障诊断方法。对振动信号通过小波包降噪提高信噪比,然后利用经验模态分解得到多个本征模态函数分量,选择与降噪信号强相关的本征模态函数分量计算其多尺度样本熵,确认能区分故障类型的最佳尺度。将这一尺度下相应分量的样本熵作为特征向量,经过归一化处理后输入支持向量机进行故障分类。试验结果表明在小样本条件下可以准确识别滚动轴承故障类型,为滚动轴承的故障识别提供了一种高效诊断方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号