首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 437 毫秒
1.
西北旱区盐湖盆地地下水化学组分源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为实现对吉兰泰盐湖盆地地下水污染源的识别与管理,系统采集区域内71个地下水样品,测定16项地下水质关键指标;以GB/T 14848—2017《地下水质量标准》中的Ⅲ类标准为依据确定特征污染物,利用因子分析(FA)确定地下水水质指标的因子分类,以地质统计学插值绘图揭示不同污染源的空间分布特征,运用APCS-MLR(绝对主成分得分多元线性回归)量化不同污染源的贡献率.结果表明:研究区内ρ(Cr6+)、ρ(As)、ρ(NH4+)、ρ(F-)、ρ(Cl-)、ρ(NO2-)、ρ(CODMn)、ρ(TDS)、pH等9项地下水水质指标均存在超标现象,其中ρ(NH4+)、ρ(Cl-)、ρ(F-)超标较为严重.通过因子分析法筛选出影响研究区地下水水质的6个公因子,即溶滤-富集作用因子(F1,贡献率为24.61%)、农业活动因子(F2,贡献率为20.38%)、原生地质-农业生产、生活污染因子(F3,贡献率为11.72%)、工业生产污染因子(F4,贡献率为10.38%)、地质环境背景因子(F5,贡献率为10.78%)、原生地质因子(F6,贡献率为10.61%),其中F1、F5、F6为环境影响因子,F2、F3、F4为人类活动影响因子.采用因子得分函数计算得到因子得分,巴音乌拉山一带整体污染因子得分较高,乌兰布和沙漠存在点状高值区,图格力高勒沟谷上游也存在一定程度的污染,而盐湖盆地东南大部分区域水质相对较好,其分布与变化受到天然因素和人类活动的双重影响.利用APCS-MLR得到各水质指标预测值与实测值的R2(线性拟合优度)均大于0.7,APCS-MLR可较好地评估各因子对水质的贡献率.研究显示,因子分析与APCS-MLR相结合可以有效地对地下水化学组分进行定性识别与定量解析.   相似文献   

2.
为研究不同水文期河水与河岸带地下水的水量补给关系,以及河水中的氮污染物对河岸带近岸地下水水质的影响,选取了安徽省宿州市杨庄乡的奎河断面作为研究对象,基于氢氧同位素示踪技术、末端元混合模型、Pearson相关性分析和多元线性回归方法,分析河水、上游潜水等补给源对近岸含水层的ρ(NH4+-N)和ρ(NO3--N)的影响,并构建河岸带地下水氮浓度预测模型.结果表明:①平水期至丰水期期间河水与地下水的补给来源主要为大气降水,河水始终补给河岸带地下水,其中,河水对潜水层及弱承压层的补给率分别为10.87%~49.74%和0~19.78%.②空间分布上,ρ(NH4+-N)和ρ(NO3--N)均表现为河水>近岸潜水>近岸弱承压水,且在地下水中均呈现由河流向两岸递减的关系.③近岸潜水层与弱承压层的ρ(NH4+-N)均随着河水和上游潜水ρ(NH4+-N)贡献量的增加而升高,近岸潜水层的ρ(NO3--N)随着河水和上游潜水ρ(NH4+-N)贡献量的增加而升高.④相比于ρ(NO3--N),多元线性回归模型更能准确地预测近岸潜水层与弱承压层ρ(NH4+-N)在ORP、ρ(DO)、河水ρ(NH4+-N)贡献量,以及上游潜水ρ(NH4+-N)和ρ(NO3--N)贡献量综合影响下的变化趋势.研究显示,河水与上游潜水的线性混合是造成河岸带地下水氮污染的重要途径,河流氮污染防治措施将为河岸带地下水水质提供重要保障.   相似文献   

3.
该研究基于自组织神经网络(SOM)和K-means方法,以华中地区某铬渣污染场地为研究对象,探讨了SOM+K-means方法应用于场地地下水污染分区管控的可能性。通过监测数据的描述性统计分析场地地下水污染特征,发现Cr (Ⅵ)、CODMn、SO42-、TDS、NO3-、NH3-N、Mn为研究区的主要污染物。基于SOM+K-means分析挖掘,并基于空间插值方法,将研究区地下水分为4类区域,并识别出每类区域需重点关注的污染指标。结果显示:类别Ⅰ需关注NO3-;类别Ⅱ需关注Cr (Ⅵ)、CODMn、NO3、TDS、NH3--N;类别Ⅲ需关注SO42-;类别Ⅳ需关注Mn。该方法可较好地应用于地下水污染分区管控,对场地地下水污染防治具有指导意义。  相似文献   

4.
桂林峰林平原区岩溶含水层氮污染空间分布特征   总被引:4,自引:0,他引:4  
为确定桂林东区岩溶含水层氮污染特征,依据地层结构及土地利用状况,选择桂林东区27个地表水与地下水采样点进行取样分析. 结果显示:桂林东区地下水NO3--N污染较为严重,ρ(NO3--N)平均值(以N计,下同)为9.15mg/L,濒临世界卫生组织的地下水饮用标准界限(10mg/L);ρ(NH4+-N)基本未检出,ρ(NO2--N)较低且NO2--N主要存在于地表水中,NH4+-N和NO2--N都不是该区地下水中氮的主要存在形式. 不同土地利用类型的区域ρ(NO3--N)水平(0.088~46.700mg/L)不同. 居民区生活污水和牲畜粪肥是浅层地下水的主要NO3--N污染源,种植蔬菜施用的有机肥则是农业区的NO3--N污染源. 此外,受水文地质条件的影响,在研究区地下水流场内沿地下水流方向ρ(NO3--N)呈逐渐升高的趋势.   相似文献   

5.
在实验室条件下,研究了在富营养水平(ρ(TN)为4.0 mg/L,ρ(TP)为0.2 mg/L)下不同ρ(NH4+-N)/ρ(NO3--N)(4/0,5/1,1/1,1/5,0/4)对沉水植物轮叶黑藻(Hydrilla verticillata)生理生化的影响,以期阐明富营养化水体中不同形态氮对沉水植物的影响.结果表明,不同ρ(NH4+-N)/p(NO3--N)对轮叶黑藻的生理活动和生长具有明显的影响,随着培养液中ρ(NH4+-N)比例的上升,尤其当ρ(NH4+-N)/ρ(NO3--N)>1时,轮叶黑藻的相对生长率、叶绿素含量和可溶性糖含量明显下降,谷氨酰胺合成酶(GS)和过氧化物酶(POD)活性升高,超氧化物歧化酶(SOD)活性下降,蛋白质含量降低.当水体中铵盐含量上升到一定比例时对轮叶黑藻产生的胁迫作用,影响了其生理功能,抑制其生长.   相似文献   

6.
电解催化还原-氯氧化无害化去除水中硝酸盐氮   总被引:2,自引:1,他引:1       下载免费PDF全文
基于对Pd-Me双金属催化还原的机理分析,提出了以NH4+-N为目标产物,Fe催化还原NO3--N的理论设想. 结合折点氯化技术,以Ti/Fe为阴极,以Ti/Ir-Ru为阳极,以NaCl为支持电解质组建无隔膜电解体系,开展了水中NO3--N去除的试验研究. 结果表明,利用电解催化还原-氯氧化法可将模拟水样中NO3--N转化为N2去除,其反应历程为阴极催化还原NO3--N生成NH4+-N,阳极电解氯氧化NH4+-N生成N2. 在ρ(Cl-)为500 mg/L,电流密度为12 mA/cm2,极板距离为9 mm,搅拌强度为450 r/min的试验条件下电解150 min,初始ρ(NO3--N)为50 mg/L的模拟水样出水ρ(TN)和ρ(NO3--N)可分别降至2.9和2.8 mg/L,去除率分别达到94.1%和94.3%,NH4+-N和NO2--N均未检出. 分析认为,阴极对NO3--N的催化还原机理为:Fe化学吸附氮氧化合物离子中的O形成固定的N—O键,电解产生的活性还原物质攻击N—O形成N—H新键.   相似文献   

7.
零价铁PRB修复硝酸盐和铬复合污染地下水   总被引:6,自引:4,他引:2       下载免费PDF全文
通过连续流动试验研究了Fe0(零价铁)-PRB(渗透反应格栅)修复受NO3--N、Cr(Ⅵ)以及NO3--N和Cr(Ⅵ)复合污染模拟地下水的反应特性,分析了Fe0对NO3--N和Cr(Ⅵ)的氧化还原产物,并且对NO3--N和Cr(Ⅵ)的相互影响进行了研究. 采用粒径为0.15~0.42 mm的Fe0和粒径为0.15 mm的活性炭作为PRB反应介质,二者的质量比为1∶1. 结果表明,Fe0单独与NO3--N反应情况下,当进水中ρ(NO3--N)为20 mg/L时,去除率达95%,NO2-为还原过渡状态,NH4+是主要产物,出水pH从原水的7.1升至9.0左右,出水中ρ(TFe)<0.60 mg/L. Fe0处理Cr(Ⅵ)情况下,对Cr(Ⅵ)有较高的去除效果,进水中ρ〔Cr(Ⅵ)〕为10 mg/L时,去除率达96%,反应产物Fe3+和Cr(Ⅲ)可以形成沉淀附着在反应介质上,不会迁移到“下游”水体中,出水pH从原水的7.0升至8.0左右,出水中ρ(TFe)<0.30 mg/L. Fe0去除NO3--N和Cr(Ⅵ)复合污染时,共存的NO3--N对Cr(Ⅵ)的去除效果没有影响,Cr(Ⅵ)的存在降低了NO3--N的去除效果.   相似文献   

8.
为了明确泰山顶PM2.5及其二次组分的输送路径与潜在来源,基于后向轨迹聚类方法对2015年冬季和春季抵达泰山顶的气团传输轨迹进行聚类分析,并利用PSCF(潜在源贡献因子)和CWT(浓度权重轨迹)方法分析泰山顶冬季和春季PM2.5、SO42-、NO3-和NH4+的潜在源域.结果表明,冬季和春季来自不同方向的气团轨迹对泰山顶PM2.5及其组分的潜在源分布的影响具有明显差异.冬季泰山顶ρ(PM2.5)和ρ(NO3-)平均值的最高值对应的气团轨迹来自湖北、河南、山东济宁等地区,而来自西北方向的轨迹1和轨迹2分别对应的ρ(SO42-)和ρ(NH4+)平均值最高;春季影响ρ(PM2.5)和ρ(NO3-)的气团轨迹主要来自西南方向的河南、安徽北部、山东聊城等地区,而源自蒙古国途经内蒙古、山西、河南北部和山东聊城的气团轨迹对ρ(SO42-)和ρ(NH4+)的贡献最大.泰山顶ρ(PM2.5)、ρ(SO42-)、ρ(NO3-)和ρ(NH4+)的PSCF分布特征与CWT分布特征类似,WPSCF(源区分布概率)和CWT的最高计算值主要集中山东济宁、聊城以及邻近的山西省、河北省和河南省,是泰山顶大气污染物的主要潜在源域.   相似文献   

9.
合肥市郊夏季PM10浓度及其与能见度的关系   总被引:3,自引:0,他引:3  
年8—9月在合肥市郊对ρ(PM10)进行了观测,并分析了其中9种水溶性离子(NO2-、Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)质量浓度. 结果表明:采样期间该地区ρ(PM10)日均值为78.9 μg/m3,9种水溶性离子的平均质量浓度为18.93 μg/m3,占ρ(PM10)的26.6%,表明水溶性组分是PM10的重要组成之一. SO42-、NO3-、NH4+和Ca2+是主要的阴、阳离子,日均质量浓度分别为8.14、4.81、3.46和1.33 μg/m3. 不同RH(相对湿度)下PM10对能见度的影响不同,RH小于80%时,二者呈显著的线性负相关〔R(相关系数)为-0.80〕;RH大于80%时,二者呈指数负相关(R为-0.48). 离子间相关性分析显示,PM10中水溶性离子的主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KCl及K2SO4. 采样期间ρ(NO3-)/ρ(SO42-)平均值为0.59,说明在该地区固定源对水溶性组分的贡献大于移动源. 另外,扬尘也是PM10重要来源之一.   相似文献   

10.
为探究临沂市冬季环境空气PM2.5中水溶性离子污染特征及来源,于2016年12月11日—2017年1月9日在临沂大学、兰山区政府、高新区翠湖嘉园、汤庄办事处、河东区政府、临沂开发区6个采样点开展样品采集.结果表明:①采样期间全市ρ(PM2.5)日均值的平均值为144.86 μg/m3,ρ(PM2.5)日均值在2016年12月20日和2017年1月4日出现峰值,分别为304.46和341.65 μg/m3.②水溶性离子日均质量浓度大小顺序依次为ρ(NO3-)> ρ(SO42-)> ρ(NH4+)> ρ(Cl-)> ρ(K+)> ρ(Ca2+)> ρ(Na+)> ρ(F-)> ρ(Mg2+)> ρ(NO2-),其中,在PM2.5中w(NO3-)、w(SO42-)、w(NH4+)分别为22.33%、16.57%、13.62%,说明NO3-、SO42-和NH4+是临沂市PM2.5的主要组成部分.③临沂市污染天和非污染天ρ(PM2.5)日均值分别为164.00和56.86 μg/m3.随污染水平增加,PM2.5中w(NO3-)明显增高,w(SO42-)和w(NH4+)基本不变,说明w(NO3-)的增加导致ρ(PM2.5)的升高.污染天和非污染天的NOR(氮氧化率)分别为0.28和0.11,SOR(硫氧化率)分别为0.34和0.28,说明污染越重,NOR和SOR越高,并且NOx的气-粒转化速率较SO2慢.污染天ρ(Cl-)和ρ(K+)分别为7.22和1.77 μg/m3,分别是非污染天的2.5和3.0倍.④采样期间非污染天和污染天的N/S〔ρ(NO3-)/ρ(SO42-)〕分别为0.85和1.39,说明非污染天时固定源对PM2.5的贡献相对较大,而污染天时移动源对PM2.5的贡献相对较大.⑤通过PMF模型法解析出3个因子.因子1对PM2.5中水溶性离子的贡献率为56.13%,代表二次源和生物质燃烧源;因子2的贡献率为25.22%,代表工业源和垃圾焚烧源;因子3的贡献率为18.65%,代表扬尘源.研究显示,临沂市冬季PM2.5污染严重,水溶性离子来源复杂,应采取多源控制的污染防治对策.   相似文献   

11.
为探究"稀土王国"江西省赣南地区离子型稀土矿对周边水体环境的影响,以离子型稀土矿分布密集区定南县濂江月子河流域和龙迳河龙头流域为研究对象,综合分析研究区特征污染物ρ(NH4+-N)空间分布特征,采用相关性分析和主成分分析揭示其主要污染来源及影响因素.结果表明:①离子型稀土矿停产整顿半年后,濂江月子河流域和龙迳河龙头流域ρ(NH4+-N)超过1.00和2.00 mg/L的采样点分别达72%和68%;pH范围为2.95~7.66,平均值分别为6.23和5.53,水体总体上偏酸性;ρ(TN)、ρ(NH4+-N)、EC与ρ(NO3--N)变异系数较大,均介于0.80~1.50之间.②相关性分析结果显示,ρ(NH4+-N)与ρ(TN)、EC均呈极显著正相关(P < 0.01);ρ(NH4+-N)与pH呈显著负相关(P < 0.05).③流经稀土尾矿区的水体中ρ(NH4+-N)随距离增加呈现明显的空间梯度分布特征,即距稀土矿区边界200 m处水体中ρ(NH4+-N)最高(12.20~200.00 mg/L),其次为1.15 km内(3.69~11.80 mg/L)及3.5 km以上水体(0.80~1.51 mg/L),矿区周边未受到采矿活动影响的水体中ρ(NH4+-N)最低(0.03~0.15 mg/L).④PCA结果表明,2条河流的主要环境影响因子为ρ(TN)、ρ(NH4+-N)、pH和EC,主要受到周边稀土矿山尾矿的强烈影响.研究显示,离子型稀土矿原位浸矿开采停产半年后,重点小流域水体中ρ(NH4+-N)高概率超标的现状仍然存在,受稀土开采活动影响较大.建议进一步开展重点小流域NH4+-N剩余"库容"精算和矿山周边地表水定期监测.   相似文献   

12.
为探究山地丘陵地区不同土地利用类型对流域水质的影响,利用2014年丹江口库区流域Landsat 8遥感影像数据(分辨率为30 m)和14条入库河流的水质数据,以库区14个小流域为基本研究单元,采用流域分割和多元统计分析相结合的方法研究土地利用类型对入湖河流水质的影响.结果表明:丹江口库区14条直接入库河流ρ(CODCr)、ρ(TN)、ρ(NH4+-N)和ρ(TP)年均值分别为14.98、4.06、1.32和0.17 mg/L,可将其划分为3组,即清水保育型、轻污染防控型和重污染治理型,各组之间的显著性差异指标为ρ(CODCr)、ρ(NH4+-N)、ρ(TN)和ρ(TP).冗余分析显示,建设用地对14条主要入库河流水质指标的影响最大,尤其是对重污染河流ρ(TN)、ρ(CODCr)和ρ(CODMn)的影响较大,应划为蓝线优化开发区;耕地对清水保育型和轻污染防控型河流ρ(TN)和ρ(TP)的影响较大,并且对ρ(TN)的影响大于ρ(TP),划为黄线控制区;林地有助于削减水体污染物,是流域主要清水产流区,划为红线保护区.   相似文献   

13.
为探究德州市采暖季环境空气中含氮/硫物质的污染特征、气-粒分配规律及影响因素,对2017年11月10日—2018年3月15日德州市市区环境空气监测站在线离子色谱分析仪监测的水溶性离子及气态前体物质量浓度的小时数据进行了分析.结果表明:①德州市环境空气监测站ρ(NO3-)、ρ(SO42-)和ρ(NH4+)平均值分别为(18.36±18.55)(12.74±10.92)(9.60±8.75)μg/m3,在2018年1月三者均达到最高值;对比PM2.5及气态含氮/硫物质的质量浓度发现,ρ(PM2.5)和ρ(SO2)在2017年12月、2018年1月和2018年2月的月均值均较高,而ρ(SO2)与ρ(SO42-)、ρ(NH3)与ρ(NH4+)均在日间(08:00—17:00)出现波峰.②对颗粒态和气态含氮/硫物质质量浓度日均值进行双变量相关分析发现,ρ(SO42-)、ρ(NO3-)、ρ(NH4+)两两之间的相关系数均高于0.75,表明二次离子的形成机制相似;而ρ(NH3)、ρ(NO2)、ρ(NO)、ρ(SO2)两两之间均不存在显著相关,说明这些气态前体物来自不同的局部排放源.③过剩NH3指数(FN)平均值为0.49±0.16,说明采样时段大气处于富氨环境,过剩的NH3会与气态HNO3生成NH4NO3,因此NO3-气溶胶的形成主要受HNO3的影响或限制.④相对湿度是影响ρ(PM2.5)最重要的气象因素,高湿环境会促进二次离子的转化.研究显示,冬季采暖排放会增加环境空气中含氮/硫物质的质量浓度,气象因素(尤其是相对湿度)对含氮/硫物质的气-粒分配也有一定影响.   相似文献   

14.
一株异养硝化-好氧反硝化菌的脱氮性能研究   总被引:6,自引:0,他引:6  
选用四因素三水平L9(34)正交试验表设计实验,通过测定对NO3--N(硝酸盐氮)和TIN的去除能力,研究碳源、碳氮比(ρ(CODCr)/ρ(N))、溶解氧含量(ρ(DO))以及pH 4种不同因素对一株恶臭假单胞菌好氧反硝化性能的影响. 结果表明,该菌株对NO3--N的最大还原率可达100%;对NO3--N还原率影响最大的因素为ρ(CODCr)/ρ(N),其次为ρ(DO),碳源和pH;对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为60 r/min,pH为6.5.对TIN去除率影响最大的因素为ρ(CODCr)/ρ(N),其次为碳源,ρ(DO)和pH; 对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为100 r/min,pH为6.5. 同时又对该菌株的异养硝化能力进行了测定发现,该菌株自身可实现同步硝化反硝化,其对氨氮的去除率可达60.91%,即该菌株可以独立完成生物脱氮的全部过程.   相似文献   

15.
UASB-MBR组合工艺处理模拟黄连素废水   总被引:1,自引:0,他引:1  
采用升流式厌氧污泥床-膜生物反应器(UASB-MBR)组合工艺处理模拟黄连素废水,模拟废水中有机污染物由葡萄糖和黄连素配制,以葡萄糖作为初级能源物质,通过微生物协同降解作用去除废水中的黄连素.在水力停留时间(HRT)为24 h,进水ρ(CODCr),ρ(NH4+-N)和ρ(黄连素)分别为1 717~4 393,91.8~158.7和64.4~276.8 mg/L,废水中黄连素的ρ(CODCr)贡献率为7.5%~25.0%的条件下,组合工艺可实现ρ(CODCr),ρ(NH4+-N)和ρ(黄连素)的去除率分别为92.5%~95.9%,67.0%~98.9%和99%以上,废水中黄连素主要通过UASB去除,去除率为95.2%~98.9%.在进水CODCr负荷为0.54~1.88 kg/(m3·d),黄连素负荷为0.71~12.42 g/(m3·d)的条件下,MBR可保证出水ρ(CODCr),ρ(黄连素)和ρ(NH4+-N)分别低于50,1.0和2.0 mg/L;随着MBR进水ρ(黄连素)升至3.45~12.42 mg/L,在黄连素的微生物毒性胁迫作用下,MBR中污泥呈由分散态向聚集态的转变.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号