首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硝化颗粒污泥的培养及其硝化性能研究   总被引:2,自引:0,他引:2  
在连续流上流式好氧反应器中接种厌氧颗粒污泥进行硝化颗粒污泥的培养及其硝化性能研究,结果表明,通过逐步提高进水N/C值能培养出高活性硝化颗粒污泥;进水氨氮浓度对系统的硝化性能没有显著影响,系统对氨氮的去除率85%;当氨氮容积负荷0.40kgNH4+-N/(m3.d)时,系统实现短程硝化,亚硝酸盐氮积累率平均高达83%。  相似文献   

2.
为了研究过度厌氧对短程硝化的影响,采用SBR反应器,在pH值为7.2~8.0、温度为(23±0.5)℃的条件下,通过控制不同的厌氧段时间考察了厌氧/好氧交替方式下短程硝化的特点,分析了过度厌氧对亚硝酸盐积累率、亚硝化菌和硝化菌的比耗氧速率、脱氮除磷特性、同步硝化反硝化(SND)率及污泥沉降性的影响。结果显示,两个系统对氨氮的去除率都达到了96%,亚硝酸盐积累率稳定在70%左右,即过度厌氧对短程硝化无明显影响;硝化过程中发生了明显的同步脱氮现象,而且在小于0.4 mg/L的范围内,平均溶解氧浓度越高则SND率越高;除磷率都达到了95%,过度厌氧不会增加厌氧阶段的释磷量,吸磷主要发生在好氧前0.5 h,DO浓度越高则吸磷速率越快;两个系统的污泥沉降性都得到了改善,过度厌氧对抑制丝状菌膨胀的强化作用不大。  相似文献   

3.
为了实现低碳城市污水高效深度脱氮,构建短程反硝化/厌氧氨氧化+硝化颗粒污泥脱氮工艺,研究硝化颗粒污泥的培养策略。结果表明,采用上向流污泥床(USB)反应器以序批式运行,并逐步缩短沉淀时间,成功培养出了硝化颗粒污泥,其中90.52%的污泥颗粒粒径>0.5 mm;颗粒污泥的沉降速度随着粒径的增大而增大,0.5~0.9 mm粒径的颗粒污泥平均沉降速度为15.66 m/h。颗粒污泥形成后,USB反应器的氨氮容积去除速率达到1.31 g/(L·d)。短程反硝化厌氧氨氧化+硝化颗粒污泥工艺的脱氮性能分析结果表明,该工艺脱氮效率高、有机碳源需求量低,适合处理低碳城市污水并实现深度脱氮。  相似文献   

4.
颗粒污泥的反硝化除磷研究   总被引:3,自引:2,他引:3  
借助SBR反应器,采用厌氧/好氧/缺氧的运行方式,对富集的以反硝化聚磷菌(DNPAOs)为优势菌的活性污泥进行颗粒化培养,约35 d后得到了较成熟的颗粒污泥.考察了该颗粒污泥的脱氮除磷性能,结果表明:当以厌氧/缺氧方式运行时系统具有良好的反硝化除磷性能,缺氧结束时除磷率>96%,对氨氮的去除率为95%左右;外加NO3^- -N的浓度对缺氧段的反硝化吸磷速率有一定影响;颗粒污泥中的DNPAOs可以利用内碳源进行反硝化吸磷,从而实现了同步脱氮除磷.  相似文献   

5.
A/O短程硝化反应器处理高浓氨氮废水的SND   总被引:2,自引:0,他引:2  
以垃圾渗滤液的UASB处理出水为研究对象,考察了A/O短程硝化反应器的同步硝化反硝化(SND)效果.当DO为2~5 mg/L时,SND对TN的去除率为5%-30%,去除的TN大致等于硝化过程中减少的TKN与产生的NOx--N的差值.C/N是影响SND去除总氮的决定性因素,随着C/N的提高,对TN的去除率增加.在进水C/N相同的情况下,短程硝化提高了SND对TN的去除率.活性污泥密实的结构和好氧颗粒污泥的存在,可能是发生SND现象的重要原因.  相似文献   

6.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

7.
接种活性污泥启动SBR后,研究选择压法培养好氧颗粒污泥(AGS)的过程中接种部分厌氧颗粒污泥对好氧颗粒化进程的影响。随着沉降时间的缩短,在第6天时肉眼即可观察到一些明显的生物胶团,第11天接种质量分数为20%的厌氧颗粒污泥时已出现少量AGS。投加厌氧颗粒污泥后反应器内菌胶团及淡黄色的AGS的比例不断增加,22 d时AGS已处于主导地位,26d时颗粒化率首次超过90%并占据绝对优势,表明反应器成功实现好氧颗粒化。观察发现接种的厌氧颗粒污泥经历了先解体再重新颗粒化过程,并可作为新生颗粒的晶核而缩短自凝聚所需时间。培养过程中反应器表现出较好的污染物去除效果,对COD、TIN及TP的去除率基本在90%、90%及87%以上,表明在同一反应器内成功实现了去除有机物及同步脱氮除磷效果。  相似文献   

8.
短程硝化反硝化对污泥沉降性能的影响及其控制措施   总被引:1,自引:0,他引:1  
短程硝化反硝化技术是实现污水厂深度脱氮和节能降耗的重要方法之一,但是在目前的研究中普遍出现了污泥沉降性能变差的现象。针对北京清河污水厂的倒置A2/O工艺在冬季运行中出现的污泥上浮并严重堵塞污水设施的情况,采用批式试验分析了曝气时间、投加FeCl3、投加厌氧池浮泥对污泥沉降性能的影响。试验结果表明,该厂亚硝酸盐氮的累积量远大于硝酸盐氮的累积量,并且短程硝化反硝化效果随着厌氧池浮泥投量(0、10、50、200mL)的增加而增强,其同步硝化反硝化的效率分别为26%、40%、47%、62%。因此,短程反硝化是造成污泥上浮的主要原因,短程硝化反硝化工艺应避免亚硝酸盐在好氧段出水中的累积。  相似文献   

9.
《Planning》2022,(1):177-185
采用改进的升流式厌氧污泥床(UASB)反应器,在温度为30℃条件下,逐渐缩短HRT(水力停留时间)由9.6 d到0.9 d,经过160 d运行,成功培养出反硝化厌氧甲烷氧化与厌氧氨氧化耦合颗粒污泥,采用荧光原位杂交(FISH)分析、16S rRNA分析等方法研究颗粒结构和微生物组成特征。结果表明:耦合颗粒污泥的氨氮和亚硝酸盐的脱除速率分别为588.9和523 mg·L~(-1)·d~(-1),反硝化厌氧甲烷氧化活性达95.2 mg·L~(-1)·d~(-1),出水硝酸盐质量浓度小于40 mg·L~(-1),总氮去除率达92.5%;耦合颗粒污泥平均粒径为0.76 mm,与接种厌氧氨氧化颗粒污泥相比增加了1.46倍;反硝化厌氧甲烷氧化微生物主要位于耦合颗粒污泥外层,厌氧氨氧化菌位于耦合颗粒污泥内部;主要的厌氧氨氧化菌为Candidatus Brocadia,主要的反硝化厌氧甲烷氧化细菌为Candidatus Methylomirabilis,反硝化厌氧甲烷氧化古菌为Candidatus Methanoperedens。  相似文献   

10.
A/O SBR中同步硝化反硝化除磷颗粒污泥的富集   总被引:6,自引:0,他引:6  
以聚糖菌颗粒污泥为接种污泥,在厌氧/好氧SBR中成功富集了具有同步硝化反硝化除磷效果的颗粒污泥。结果表明,培养过程中,污泥总磷含量、厌氧释磷量及磷酸盐去除率的提高表明反应器中聚磷菌逐渐替代聚糖菌成为优势菌种;培养末期颗粒污泥的粒径为600~1000μm,SVI为48mL/g,有机物主要在厌氧阶段被去除并以胞内聚合物(PHB)的形式储存,厌氧阶段对TOC的去除率为87%,对TOC的总去除率为90%,对磷酸盐的去除率为95.6%;氮的去除是在好氧条件下经同步硝化反硝化完成的,且PHB为主要的反硝化碳源,对氨氮的去除率为99.3%,对总氮的去除率为85.5%。  相似文献   

11.
双泥SBR系统的短程硝化反硝化和反硝化除磷研究   总被引:2,自引:0,他引:2  
针对我国中小城镇污水低C/N值的水质特点,考察了双泥法SBR工艺的脱氮除磷效果。结果表明:硝化反应器采用生物膜SBR并控制溶解氧为1.0mg/L进行连续曝气,可以实现短程硝化反硝化;在厌氧/缺氧反应器中,聚磷菌能同时利用硝酸盐和亚硝酸盐为电子受体进行反硝化除磷,从而降低了对有机碳源和溶解氧的需求以及能耗。小试系统对模拟城镇污水中COD、TN、TP的平均去除率分别为94.9%、81.2%、89.5%,出水水质达到了《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准。  相似文献   

12.
喷射环流反应器在好氧条件下具有良好的脱氮效能,其对氨氮和总氮的去除率分别达到80%和70%以上,且两者的去除率成正比.试验测定了反应器出水中NO-x-N含量,结果表明出水中氮主要以氨氮和亚硝酸盐氮的形式存在,证明该反应器在硝化过程中实现了亚硝酸盐的积累.反应器中脱氮率随进水C/N值的增加而升高,证明了异养硝化细菌的存在.对废水处理过程中产生的废气进行了气相色谱分析,结果表明废气中N2含量相比于空气样品中增加了0.24%,证明了反应器中反硝化过程的发生.试验结果表明,喷射环流反应器中脱氮机理为亚硝酸盐型同步硝化反硝化.  相似文献   

13.
反硝化除磷菌(DPAOs)能够在缺氧条件下同步完成脱氮除磷,是反硝化除磷工艺的主体。以武汉沙湖污水处理厂二沉池的回流污泥为种泥,采用二段式SBR工艺实现了反硝化除磷菌的快速富集。在第一阶段反应器采用厌氧/好氧(A/O)模式运行,可以实现对除磷菌(PAOs)的快速诱导和富集,运行13 d后,SBR反应器对氮、磷的去除率均达到85%以上。而后进入第二阶段,采用厌氧/好氧/缺氧(A/O/A)模式运行,以快速富集培养反硝化除磷菌,经过26 d的运行,反应器对氨氮和磷酸盐的去除率分别达到92.2%和91.2%左右,且典型周期内硝酸盐的消耗量与磷的吸收量基本呈线性关系,表明系统的反硝化除磷能力得到显著增强。  相似文献   

14.
好氧反硝化在短程硝化反硝化工艺中的作用研究   总被引:1,自引:0,他引:1  
采用SBR反应器处理垃圾渗滤液,研究了短程硝化反硝化过程中好氧反硝化的作用。结果表明,SBR反应器的亚硝化效果良好,氨氮几乎完全被氧化为NO2^- -N;该系统的活性污泥中同时存在能还原NO3^- -N和NO2^- -N的好氧反硝化菌,还原NO3^- -N的好氧反硝化菌和氨氧化菌的数量及其总活性高于NO2^- -N氧化菌,这是SBR反应器能够长期维持亚硝化状态的重要原因;有机物浓度越高则好氧反硝化速率越快,此时氨氮均被氧化为NO2^- -N,当有机物浓度达到某临界值时,好氧反硝化速率几乎保持不变;溶解氧浓度越低则好氧反硝化速率越快,释放出的OH^-会导致pH值升高。好氧反硝化对于维持和促进SBR反应器的短程硝化反硝化具有重要的作用。  相似文献   

15.
针对焚烧垃圾渗滤液水质的多变性,为了在C/N值较低的情况依旧能够有效脱除总氮,提出了以厌氧/好氧/兼氧/厌氧为基础的大比例回流的短程硝化反硝化工艺,对焚烧垃圾渗滤液进行预处理。通过中试研究了该工艺的可行性,并通过监测水质及污泥浓度的沿程变化规律,分析了对污染物的去除机理。结果表明,通过控制各反应池的DO浓度及出水的回流比,实现亚硝态氮的积累和稳定的反硝化是可行的,且系统pH值能够稳定在7~8.5之间。系统最佳的HRT为2.9 d,此时出水COD、氨氮及总氮分别为778.1、15和136.9 mg/L,去除率分别为70.3%、96.6%和69.6%,亚硝化率为92.9%。污染物的去除主要发生在第一级厌氧池中,且以吸附去除为主;微生物的同化作用与增殖主要发生在兼氧池中。污泥回流确保了第一级厌氧池具有较高的污泥量与较好的处理效果。  相似文献   

16.
反硝化聚磷污泥的培养驯化及关键参数研究   总被引:5,自引:1,他引:4  
反硝化聚磷污泥的培养是反硝化除磷工艺运行的前提.采用厌氧/好氧诱导富集以PAOs、厌氧/缺氧诱导富集DPB、厌氧/缺氧连续流强化DPB的三阶段方式培养反硝化聚磷污泥,并考察了其关健参数.结果表明,采用该培养方式可成功培养出反硝化聚磷污泥;C/P是PAOs富集阶段的关键参数,其值宜控制在15-20;对于DPB的富集,C/N是关键参数,C/N为2-4时培养效果较好;而在连续流厌氧强化阶段,除C/N外,污泥回流比亦为关键参数,建议该阶段的污泥回流比取0.35-0.5.  相似文献   

17.
喷射环流反应器同步硝化反硝化机理的研究   总被引:2,自引:0,他引:2  
喷射环流反应器在好氧条件下具有良好的脱氮性能,其对氨氮和总氮的去除率分别达到80%和70%以上,且两者的去除率成正比.试验测定了反应器出水中NOx^--N的含量,结果表明出水中的氮主要以氨氮和亚硝酸盐氮的形式存在,证明该反应器在硝化过程中实现了对亚硝酸盐的积累.反应器的脱氮效果随进水C/N值的增加而提高,证明了异养硝化细菌的存在.对废水处理过程中产生的废气进行气相色谱分析,结果表明废气中氮气的含量比空气的增加了0.24%,证明反应器中发生了反硝化反应.综合试验结果表明,喷射环流反应器中的脱氮机理为亚硝酸盐型同步硝化反硝化.  相似文献   

18.
针对处理低C/N废水过程中传统生物反硝化效率低的技术难题,在活性污泥反硝化系统中投加羟基氧化铁,研究羟基氧化铁对C/N逐渐降低废水反硝化效率的影响。结果表明,在C/N为10、7.5时,羟基氧化铁对硝态氮去除率的影响不明显;当C/N为5、2.5时,投加羟基氧化铁可使硝态氮去除率分别提高16.38%和15.76%,同时加快了系统对反硝化中间产物亚硝态氮的去除。另外,投加羟基氧化铁还促进了胞外聚合物(EPS)中蛋白质(PN)和多糖(PS)的分泌,降低了传统反硝化亚硝酸还原酶(NIR)的活性。羟基氧化铁可以改变微生物的群落结构,使系统能够富集Uncultured_bacterium_f_Gemmatimonadaceae和Neochlamydia等脱氮菌,诱导发生硝酸盐型厌氧亚铁氧化,实现传统反硝化和硝酸盐型厌氧亚铁氧化协同去除硝态氮。  相似文献   

19.
利用实际城市污水在SBR中试系统中培养好氧颗粒污泥(AGS),考察AGS对污染物的去除特性,同时利用Illumina MiSeq高通量测序对成熟的AGS和絮体污泥中的细菌群落组成进行对比研究,分析污泥好氧颗粒化原因,以期为AGS的工程化应用提供理论依据。结果表明:通过逐渐缩短沉淀时间的方式能够在30 d内培养出粒径在220μm以上的AGS;并且在180 d时系统内颗粒化趋于成熟,AGS占比达95%以上。成熟的AGS能够实现同步硝化反硝化,出水TN低于10 mg/L,TN去除率稳定在85%以上。通过对AGS与絮体污泥中细菌群落多样性的对比分析可知,成熟的AGS细菌群落多样性降低且群落组成发生显著变化。Proteobacteria是絮体污泥中最优势的细菌门,而在AGS中,最优势的细菌门为Bacteroidetes,其次是Proteobacteria。Flavobacterium、Aquimonas和Candidatus Accumulibacter在AGS中的相对丰度高于絮体污泥,说明这些菌属可能促进絮体污泥形成AGS。  相似文献   

20.
两段SBR双污泥系统的短程硝化/反硝化除磷研究   总被引:3,自引:1,他引:2  
针对传统脱氮除磷工艺存在的占地面积大、运行成本高等问题,将短程硝化与反硝化除磷工艺相结合而构建了两段SBR双污泥短程硝化反硝化除磷工艺.在成功启动短程硝化反应器后,亚硝酸盐氮的积累率达到94.23%,系统对氨氮的平均去除率>95%;在以亚硝酸盐氮为电子受体的反硝化除磷菌培养驯化阶段,吸磷率达到了64.44%,同时NO2--N由17.79 mg/L降低为0.05 ms/L,电子受体被完全消耗,基本达到了以NO2--N为电子受体进行反硝化聚磷菌富集的目的.在此基础上,考察了N/P值对系统脱氮除磷效果的影响.结果表明,当N/P为3.0、2.2、1.7时对COD和氨氮的去除效果均较好,对COD的去除率分别为90%、89%、90%,对氨氮的去除率分别为96%、95%和96.7%;当N/P为3.0和2.2时除磷效果良好,平均去除率分别达到了88.5%和91%;而当N/P为1.7时除磷效果明显下降,仅为75.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号