首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Eggs of the American horseshoe crab, Limulus polyphemus L., develop on sandy estuarine beaches during the spring and summer, and are potentially vulnerable to thermal stress during the 3-4 weeks of development to the first instar (trilobite) larval stage. In many marine taxa, heat shock (stress) proteins (Hsp's) help individuals acclimate to stresses by restoring the proper folding of cellular proteins whose shape has been altered by temperature shock or other forms of environmental stress. We examined the survival of embryos and first instar (trilobite) larvae following heat shock, and compared the levels of Hsp70 in heat shocked and control animals. Animals acclimated to 13 or 22 °C had close to 100% survival when heat shocked for 3 h at 35 or 40 °C, but exposure to 45 °C for 3 h was lethal. To study the effect of heat shock on Hsp70 production under environmentally realistic conditions, animals were acclimated to either 13 or 22 °C, heat-shocked at 35 °C for 3 h, and soluble proteins were extracted following 0, 2, 4, or 6 h recovery at 22 °C. The relative amounts of Hsp70 in horseshoe crab embryos and larvae were examined using SDS-PAGE and Western blotting. Relative to controls animals held at a constant temperature, there was a slight elevation of Hsp70 only among heat shocked trilobite larvae in the 6 h recovery treatment. Hsp70 levels did not differ significantly between control and heat shocked embryos. Horseshoe crabs have adapted to living in a thermally stressful environment by maintaining a high baseline (constitutive) level of cellular stress proteins such as Hsp70, rather than by synthesizing inducible Hsp's when stressful temperatures are encountered. This may be an effective strategy given that the heat shocks encountered by intertidal embryos and larvae occur regularly as a function of diurnal and tidal temperature changes.  相似文献   

2.
Faecal carriage of Clostridium difficile in healthy animals has been reported recently, especially in piglets and calves. However there is limited data about carriage in animals just prior to slaughter in Europe. The main objective of this study was to determine the presence of C. difficile in pigs and cattle at the slaughterhouse. C. difficile was isolated in 6.9% of the cattle at the slaughterhouse. None of the pig slaughter samples were positive for C. difficile after an enrichment time of 72 h. For complementary data, a short study was conducted in piglets and calves at farms. C. difficile was more prevalent in piglets (78.3%) than in calves (22.2%) on the farms. Regarding the piglet samples, 27.8% of the positive samples were detected without enrichment of stools. The PCR ribotype 078 was predominant in farm animals. Samples isolated from slaughter cattle presented the widest range in PCR-ribotype variety, and the most prevalent PCR ribotype was 118a UCL. The results of this study confirm that C. difficile is present in slaughter animals in Belgium with a large percentage of toxigenic strains also commonly found in humans.  相似文献   

3.
4.
5.
6.
Hyperbaric oxygen (HBO) is thought to confer protection to cells via a cellular response to free radicals. This process may involve increased expression of heat shock proteins, in particular the highly inducible heat shock protein 72 (Hsp72). Healthy male volunteers (n = 16) were subjected to HBO for 1 h at 2.8 ATA. Inducible Hsp72 expression was measured by flow cytometry pre-, post- and 4 h-post HBO. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density centrifugation pre-, post- and 4 h post-HBO. PBMC were then subjected to an in vitro heat shock at 40°C or hypoxia at 37°C (5% O2) with a control at 37°C. Cells were then analysed for Hsp72 expression by flow cytometry. Monocytes showed no significant changes in Hsp72 expression following HBO. No detectable Hsp72 was seen in lymphocytes or neutrophils. Following in vitro hypoxic exposure, a significant increase in Hsp72 expression was observed in monocytes isolated immediately post- (p = 0.006) and 4 h post-HBO (p = 0.010) in comparison to control values. HBO does not induce Hsp72 expression in PBMC. The reported benefits of HBO in terms of pre-conditioning are not due to inducement of Hsp72 expression in circulating blood cells, but may involve an enhancement of the stress response.  相似文献   

7.
Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.  相似文献   

8.
9.
In Drosophila melanogaster, the sole member of the Bcl-2-associated anthanogene (BAG)-family proteins, called Starvin (Stv), has only been recently described. BAG proteins regulate a large range of physiological processes including life/death cell balance and stress response. The role of Stv has been poorly studied in the context of abiotic stress and particularly during and after cold stress. In this study we investigated the temporal expression of Stv gene and protein in adult flies during both the cold stress (up to 9 h at 0 °C) and the subsequent recovery phase (up to 8 h at 25 °C). Because BAG proteins can regulate positively and negatively the function of Hsp70/Hsc70, we also checked whether Stv expression was related to Hsp70 and Hsc70. Stv mRNA and Stv protein both showed a similar expression pattern: no modulation during the cold period followed by a significant up-regulation during the recovery period. A coordinated response of Stv and Hsp70 mRNA was observed, but not for Hsc70. Our findings indicate that Stv expression is part of a stress-induced program in D. melanogaster. It probably acts as a co-chaperone modulating the activity of Hsp70 chaperone machinery during recovery from cold stress. Finally our results support the suggestion that Stv and human BAG3 may be functional homologs.  相似文献   

10.
Organisms cope physiologically with extreme temperature by producing heat shock proteins (HSPs). Expression of Hsp70 enhances thermal tolerance and represents a key strategy for ectotherms to tolerate elevated temperature in nature. Synthesis of these proteins, together with other physiological responses to elevated temperatures, increases energy demands. A positive association between multiple and single locus heterozygosity (MLH and SLH, respectively) and individual fitness has been widely demonstrated. In molluscs, MLH can decrease routine metabolic rates and improve energetic status. Juvenile Concholepas concholepas live in the intertidal zone and are constantly exposed to temperature fluctuations. Thus, these young individuals are exposed both to thermal risks and the large metabolic costs required to cope with thermal stress. We evaluated the effects of allozyme MLH and SLH on basal (control animals) and induced (stressed animals) levels of the Hsp70 in juveniles C. concholepas. Juveniles (n = 400) were acclimated at 16 °C for 2 weeks; then 100 animals were exposed to 24 °C (stress) and 100 were kept at 16 °C (control) for 2 and 7 days. The variability of 20 loci was analyzed by starch gel electrophoresis. For SLH effects we used 7 polymorphic loci. We quantified expression of Hsp70 by Western blot analyses. Hsp70 expression increased markedly (~ 90%) with temperature. We found a positive association between MLH and basal and induced levels of Hsp70 in the 2-day exposure experiment. Regardless of temperature, Hsp70 levels increased with MLH (r2 = 0.7 and 0.9, for basal and induced levels, respectively) reaching maximal levels in juveniles with intermediate and high MLH levels (2 and 3 loci), and decreasing slightly (but not significantly) in juveniles with highest MLH (≥ 4 heterozygous loci). However, after 7 days of exposure to thermal stress, less heterozygous juveniles attained the same levels of Hsp70 than more heterozygous juveniles. Given the faster increment of Hsp70 in C. concholepas juveniles with intermediate-high levels of MLH, these individuals could be less affected by thermal stress in the intertidal zone. We found an association between specific loci genotype and higher Hsp70 levels (basal or induced). In comparison to homozygous juveniles, heterozygous juveniles for several loci showed higher Hsp70. However, these associations were not for the same loci in juveniles exposed to high temperature for 2 and 7 days. This suggests genotypic variation at some allozyme loci could be more important in the period of initial response to high temperature and others can be more important in the response to the chronic temperature stress.  相似文献   

11.
12.
13.
14.

Background  

The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70.  相似文献   

15.
16.
Oxidative stress can be a significant cause of cell death and apoptosis. We performed studies in HepG2 cells to explore whether prior exposure to oxidative stress (“oxidative preconditioning”) and geldanamycin (GA) treatment can protect the cell from damage caused by subsequent oxidative insults. The cells were treated with 10 nM GA for 24 h before oxidative stress. Oxidative preconditioning was achieved by 2 h exposures to H2O2 (50 μM) separated by a 10-h recovery period in normal culture medium. Oxidative stress was induced by exposure to 500 μM H2O2 for 24 h. The effects of GA and oxidative preconditioning were investigated on the formation of Hsp90, vimentin, insoluble vimentin aggregates, and cleavage of vimentin in a cell culture model of oxidative stress. GA treatment leads to enhanced expression of Hsp90 and vimentin and to inhibition of vimentin protein aggregation. Similar results were obtained by oxidative preconditioning. It is confirmed that low concentrations of GA protected HepG2 cells from subsequent oxidative stress by increasing the levels of Hsp90 and by alleviating the extent of cell apoptosis induced by oxidative stress, which is similar to oxidative preconditioning. However, in contrast to preconditioning, GA treatment obviously changed binding activity of Hsp90 to vimentin cleavages. All the above indicated that low concentrations of GA treatment triggered cell protection from oxidative stress. Both the level of Hsp90 and its ability to bind with vimentin were changed by low concentrations of GA and might contribute to oxidative stress protection.  相似文献   

17.
18.
In a number of animal species it has been shown that exposure to low levels of stress at a young age has a positive effect on stress resistance later in life, and on longevity. The positive effects have been attributed to the activation of defence/cleaning systems (heat shock proteins (Hsps), antioxidases, DNA repair) or to effects of a changed metabolic rate, or both. We investigated the effect of mild stress exposures early in life on Hsp70 synthesis after a harder stress exposure later in life in five isofemale lines ofDrosophila melanogaster. Female flies were either exposed to repeated bouts of mild heat stress (3 h at 34‡C) at a young age (days 2, 4 and 6 post-eclosion) or held under standard laboratory conditions. At 16 and 32 days of adult age, respectively, flies were exposed to a high temperature treatment known to induce Hsp70 in the investigated species (1 h at 37‡C). Thereafter, the inducible Hsp70 levels were measured. Our data show a tendency towards increased Hsp70 synthesis with increased age for both ’mild stress’ and ’no stress’ flies. Moreover, the results show that flies exposed to mild stress at a young age synthesized more Hsp70 upon induction, compared to control flies, and that this difference was accentuated at 32 days compared to 16 days of age. Thus, bouts of mild heat stress at a young age impact on the physiological stress response system later in life. This may be caused by an increased ability to react to future stresses. Alternatively, the mild stress exposure at a young age may actually have caused cellular damages increasing the need for Hsp70 levels after stress exposure later in life. The importance of an Hsp70 upregulation (throughout life) in explaining the phenomenon of hormesis is discussed, together with alternative hypotheses, and suggestions for further studies.  相似文献   

19.
Yu J  Bao E  Yan J  Lei L 《Cell stress & chaperones》2008,13(3):327-335
The objective of this study was to investigate the kinetics of Hsp60, Hsp70, Hsp90 protein, and messenger RNA (mRNA) expression levels and to correlate these heat shock protein (Hsp) levels with tissue damage resulting from exposure to high temperatures for varying amounts of time. One hundred broilers were heat-stressed for 0, 2, 3, 5, and 10 h, respectively, by rapidly increasing the ambient temperature from 22 +/- 1 degrees C to 37 +/- 1 degrees C. Obvious elevations of plasma creatine kinase indicate damage to myocardial cells after heat stress. Hsp70 and Hsp90, and their corresponding mRNAs in the heart tissue of heat-stressed broilers, elevated significantly after 2 h of heat exposure and decreased quickly with continued heat stress. However, the levels of hsp60 mRNA in the heart of heat-stressed broilers increased sharply (P < 0.01) at 2 h of heat stress but then decreased quickly after 3 h, while the level of Hsp60 protein in the heart increased (P < 0.01) at 2 h of heat stress and maintained a high level throughout heat exposure. The results indicate that the elevation of the three Hsps, especially Hsp60 in heart, may be important markers at the beginning of heat stress and act as protective proteins in adverse environments. The reduction of Hsp signals in the cytoplasm of myocardial cells implies that myocardial cell lesions may have an adverse impact on the function of Hsps during heat stress. Meanwhile, the localization of Hsp70 in blood vessels of broiler hearts suggests another possible mechanism for protection of the heart after heat exposure.  相似文献   

20.
Pma1p is an essential plasma membrane H+-pump in Saccharomyces cerevisiae that pumps out H+ at the expense of cellular ATP. Its activity is induced by glucose at 30°C and is inhibited by Hsp30 during exposure to heat shock conditions. To further investigate the regulation of Pma1 function by glucose and Hsp30 during exposure to thermal stress, we estimated Pma1 activity, its protein levels and ser-phosphorylation status in membrane fractions isolated from BY4741 and hsp30Δ cells grown in dextrose and sorbitol at 30°C, and following exposure at 40°C for 30 min. Our results demonstrate that Pma1 activity and protein levels were reduced in Hsp30+ cells following exposure to thermal stress in dextrose media. The above was not observed in hsp30Δ cells wherein Pma1 activity did not decrease following exposure to similar conditions. Although Pma1p levels decreased in heat-shocked hsp30Δ cells, it was lower compared to that observed in Hsp30+ cells. Total ser-phosphorylation of Pma1 also showed a decrease following exposure to heat shock condition in dextrose media in both BY4741 and hsp30Δ cells. Its levels were also reduced in BY4741 cells upon heat shock treatment in sorbitol unlike that observed in hsp30Δ cells wherein it was increased. Taken together the above indicate that heat shock induced reduction in Pma1 activity and protein levels in dextrose media required Hsp30. To examine functional interactions between dextrose utilization, Hsp30 and the regulation of various aspects of Pma1, we determined if dextrose regulated other functions attributed to Hsp30. Results demonstrate that the deletion of HSP30 rendered cells dependent on dextrose utilization for survival during exposure to lethal heat stress. Our study has hence been able to establish a functional relationship between glucose utilization, Hsp30 function and the regulation of Pma1 activity. Finally, since the deletion of HSP30 renders Pma1p levels and its activity unresponsive to thermal stress in dextrose media, we concluded that Hsp30 is necessary to maintain Pma1 in a regulation competent conformation. Hsp30 may thus act as a chaperone in the S. cerevisiae plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号