首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the development of an automatic floor cleaning robot system, an accurate positioning method in unstructured and dynamically changing environments is indispensable. Dead reckoning is a popular method, but is not reliable for measurement over long distances especially on uneven and slippery floors due to the accumulation error of wheel diameter and slippage. The landmark method, which estimates current position relative to landmarks, cannot be used in an uncharted and an unfamiliar environment. We have proposed a new method calledCooperative Positioning System (CPS). The main concept of CPS is to divide the robots into two groups, A and B where group A remains stationary and acts as a landmark while group B moves, then group B stops and acts as a landmark for group A. This process is repeated until the target position is reached. CPS has a far lower accumulation of positioning error than dead reckoning, and can work in three-dimensions. Also, CPS has inherent landmarks and therefore works in uncharted environments. In previous papers, we have introduced the prototype CPS machine models, CPS-I and CPS-II and demonstrated high performance as a positioning system in an unknown and uneven environment. In this paper, we report on the third prototype CPS model, CPS-III, that is designed specifically as an automatic floor-cleaning robot system, and the results of a floor cleaning experiment. In this system, we categorize these robots fortwo tasks, that is, an accurate positioning task achieved with 3 robots using the CPS strategy, and a floor-cleaning task executed by an omni-directional vehicle, so as to improve the efficiency of the floor-cleaning system. Experiments show that these robots can perform a floor-cleaning task in a corridor within a positioning error of 140.8 mm even after robots move over a distance of 101.7 m.  相似文献   

2.
提出一种单目视觉人工路标辅助惯性导航系统(Inertial Navigation System,INS)的定位方法。首先设计人工路标,并用相机拍摄各预先设置的人工路标,记录拍摄每个路标时相机位置和姿态,建立视觉路标库。在利用惯性导航系统定位过程中,对单目相机采集到的图像进行路标提取、与路标库中相应路标进行匹配,估计当前相机位置和姿态,然后利用卡尔曼滤波将视觉匹配估计的位置信息和INS有效地融合。实验结果表明:传统航位推算方法的平均误差为0.715 m,本文组合导航方法的平均误差为0.154 m,该方法有效地提高了惯性导航定位的精度。  相似文献   

3.
基于人工路标和立体视觉的移动机器人自定位   总被引:2,自引:0,他引:2       下载免费PDF全文
针对室内移动机器人的自定位问题,提出一种基于人工路标和双目视觉的室内移动机器人自定位方法。首先设计了一种可扩展的彩色人工路标,并给出路标的编码方法;然后利用色彩空间变换,直线交比不变性以及自适应窗口实现路标检测与识别;最后在分析双目立体视觉模型的基础上建立起基于路标的双目立体视觉定位模型,实现移动机器人的准确定位。实验结果表明,路标对光照和视觉传感器的采集位置具有较强的鲁棒性,定位精度能够满足室内移动机器人的定位要求。  相似文献   

4.
Recently, many extensive studies have been conducted on robot control via self-positioning estimation techniques. In the simultaneous localization and mapping (SLAM) method, which is one approach to self-positioning estimation, robots generally use both autonomous position information from internal sensors and observed information on external landmarks. SLAM can yield higher accuracy positioning estimations depending on the number of landmarks; however, this technique involves a degree of uncertainty and has a high computational cost, because it utilizes image processing to detect and recognize landmarks. To overcome this problem, we propose a state-of-the-art method called a generalized measuring-worm (GMW) algorithm for map creation and position estimation, which uses multiple cooperating robots that serve as moving landmarks for each other. This approach allows problems of uncertainty and computational cost to be overcome, because a robot must find only a simple two-dimensional marker rather than feature-point landmarks. In the GMW method, the robots are given a two-dimensional marker of known shape and size and use a front-positioned camera to determine the marker distance and direction. The robots use this information to estimate each other’s positions and to calibrate their movement. To evaluate the proposed method experimentally, we fabricated two real robots and observed their behavior in an indoor environment. The experimental results revealed that the distance measurement and control error could be reduced to less than 3 %.  相似文献   

5.
6.
针对餐厅环境复杂、定位精度低等问题,提出了一种以磁传感器为核心的餐厅服务机器人导引控制方法。该方法通过安装在机器人底盘的磁传感器感知铺设在地面下的磁条,使得机器人能够平滑、准确地沿着磁条运动,在运动的过程中,结合地标模块感知到的地标信息,获取精准的位置信息和工作状态。最后将该方法应用于一种实际餐厅服务机器人,实现了机器人在餐厅内的精准定位与导航。实验结果表明,本文所提方法性能可靠、成本较低、实用性较强,具有较广阔的应用前景。  相似文献   

7.
针对卫星信号受阻,无预设基础设施(定位基站、地标等)环境下多机器人间的相对定位问题,提出了一种基于单个超宽带(ultra-wideband, UWB)融合里程计的多机器人相对定位方法。该方法利用滑动窗口截取历史时刻的多组机器人间测距信息与里程计预测的机器人位姿,构建非线性最小二乘问题,实现机器人间的相对位姿估计;利用扩展卡尔曼滤波算法估计里程计协方差,并将其以加权的方式运用于非线性优化,抑制滑动窗口内里程计累积误差对定位结果的影响;最后,利用图优化算法融合里程计与非线性优化获得的相对位姿作进一步优化,抑制UWB测量误差影响,以获得稳定的相对定位结果。实验结果表明,在6 m×12 m的真实测试环境中,所提方法能够获得0.32 m的相对位置精度和4.16°的相对角度精度,相比于现有多机器人相对定位方案,该方法具有高精度、低成本、部署简单以及定位稳定的优点。  相似文献   

8.
This paper presents an approach for decentralized real-time motion planning for multiple mobile robots operating in a common 2-dimensional environment with unknown stationary obstacles. In our model, a robot can see (sense) the surrounding objects. It knows its current and its target's position, is able to distinguish a robot from an obstacle, and can assess the instantaneous motion of another robot. Other than this, a robot has no knowledge about the scene or of the paths and objectives of other robots. There is no mutual communication among the robots; no constraints are imposed on the paths or shapes of robots and obstacles. Each robot plans its path toward its target dynamically, based on its current position and the sensory feedback; only the translation component is considered for the planning purposes. With this model, it is clear that no provable motion planning strategy can be designed (a simple example with a dead-lock is discussed); this naturally points to heuristic algorithms. The suggested strategy is based on maze-searching techniques. Computer simulation results are provided that demonstrate good performance and a remarkable robustness of the algorithm (meaning by this a virtual impossibility to create a dead-lock in a random scene).  相似文献   

9.
In this paper, the control of robots with elastic joints in contact with dynamic environment is considered. It is shown how control laws synthesized for the robots with rigid joints interacting with dynamic environment can also be used in the case of robots with elastic joints. The proposed control laws are based on a robot model interacting with dynamic environment, including the dynamics of actuators and the elasticity of joints. The proposed control laws possess two feedback loops: the outer, serving for on-line calculation of the motor shaft angle based on the position error or the contact force error, and the inner one, serving for performing stabilization around the calculated motor shaft angle. Simulation results which exhibit the application of the appropriate control laws are also presented.  相似文献   

10.
After a brief review of the current research on multi-robot systems, the paper presents a path planning and control scheme for a cooperative three-robot system transferring/manipulating a large object from an initial to a desired final position/orientation. The robots are assumed to be capable of holding the object at three points that define an isosceles triangle. The mode of operation adopted is that of a master-and-two-slave robots. The control scheme employs the differential displacement of the object which is transformed into that of the end-effector of each robotic arm, and then used to compute the differential displacements of the joints of the robots. The scheme was applied to several 3-robot systems by simulation and proved to be adequately effective, subject to certain conditions regarding the magnitude of the differential displacements. Here, an example is included which concerns the case of three Stäubli RX-90L robots.  相似文献   

11.
对由捷联惯导和测速设备所搭建的航位推算系统进行了研究,提出了一种基于航位推算系统的组合导航算法。该算法在传统的航位推算算法的基础上,利用惯组中加速度计组合的输出和航位推算给出的位置与姿态完成了惯导速度更新。将惯导速度与航位推算速度构造的速度量测和由航位推算位置与地标点给出的位置参考构成的位置量测输入卡尔曼滤波器,采用序贯处理完成了对姿态误差的估计。这种方法较好的解决了组合导航系统具有多个输出频率差异很大的量测时信息融合的问题。最后通过半实物仿真对该算法的有效性进行了验证。  相似文献   

12.
Reasoning about programs in continuation-passing style   总被引:6,自引:0,他引:6  
Plotkin's v -calculus for call-by-value programs is weaker than the -calculus for the same programs in continuation-passing style (CPS). To identify the call-by-value axioms that correspond to on CPS terms, we define a new CPS transformation and an inverse mapping, both of which are interesting in their own right. Using the new CPS transformation, we determine the precise language of CPS terms closed under -transformations, as well as the call-by-value axioms that correspond to the so-called administrative -reductions on CPS terms. Using the inverse mapping, we map the remaining and equalities on CPS terms to axioms on call-by-value terms. On the pure (constant free) set of -terms, the resulting set of axioms is equivalent to Moggi's computational -calculus. If the call-by-value language includes the control operatorsabort andcall-with-current-continuation, the axioms are equivalent to an extension of Felleisenet al.'s v -C-calculus and to the equational subtheory of Talcott's logic IOCC.This article is a revised and extended version of the conference paper with the same title [42]. The technical report of the same title contains additional material.The authors were supported in part by NSF grant CCR 89-17022 and by Texas ATP grant 91-003604014.  相似文献   

13.
Being able to navigate accurately is one of the fundamental capabilities of a mobile robot to effectively execute a variety of tasks including docking, transportation, and manipulation. As real-world environments often contain changing or ambiguous areas, existing features can be insufficient for mobile robots to establish a robust navigation behavior. A popular approach to overcome this problem and to achieve accurate localization is to use artificial landmarks. In this paper, we consider the problem of optimally placing such artificial landmarks for mobile robots that repeatedly have to carry out certain navigation tasks. Our method aims at finding the minimum number of landmarks for which a bound on the maximum deviation of the robot from its desired trajectory can be guaranteed with high confidence. The proposed approach incrementally places landmarks utilizing linearized versions of the system dynamics of the robot, thus allowing for an efficient computation of the deviation guarantee. We evaluate our approach in extensive experiments carried out both in simulations and with real robots. The experiments demonstrate that our method outperforms other approaches and is suitable for long-term operation of mobile robots.  相似文献   

14.
This paper is on cooperative localization and control of multiple heterogeneous robots utilizing a string formation. This formation is preferred, since robots can move along a narrow passage utilizing this formation. Dead reckoning localization based on inertial measurement units leads to accumulated localization error. To avoid the error accumulation in dead reckoning localization, this paper introduces the last-move strategy for multiple heterogeneous robots. In the last-move strategy, a single robot is selected for maneuvering, and it turns on its bearing-range sensors for a short amount of time, in order to locate itself. While the selected robot moves, all other robots stop moving and perform as static landmarks for the moving robot. A robot may not maintain its desired course, in the case where environmental disturbance is severe. We thus develop a control strategy for avoiding obstacles while estimating the disturbance direction at a robot's location. To the best of our knowledge, this paper is novel in localization and control of a team of heterogeneous robots, considering the case where environmental disturbance is severe. The proposed localization process is energy-efficient, thus is suitable for practical applications. The performance of the proposed schemes is demonstrated utilizing MATLAB simulations.  相似文献   

15.
Mathematical Model of Foraging in a Group of Robots: Effect of Interference   总被引:2,自引:0,他引:2  
In multi-robot applications, such as foraging or collection tasks, interference, which results from competition for space between spatially extended robots, can significantly affect the performance of the group. We present a mathematical model of foraging in a homogeneous multi-robot system, with the goal of understanding quantitatively the effects of interference. We examine two foraging scenarios: a simplified collection task where the robots only collect objects, and a foraging task, where they find objects and deliver them to some pre-specified home location. In the first case we find that the overall group performance improves as the system size grows; however, interference causes this improvement to be sublinear, and as a result, each robot's individual performance decreases as the group size increases. We also examine the full foraging task where robots collect objects and deliver them home. We find an optimal group size that maximizes group performance. For larger group sizes, the group performance declines. However, again due to the effects of interference, the individual robot's performance is a monotonically decreasing function of the group size. We validate both models by comparing their predictions to results of sensor-based simulations in a multi-robot system and find good agreement between theory and simulations data.  相似文献   

16.
In current visual SLAM methods, point-like landmarks (As in Filliat and Meyer (Cogn Syst Res 4(4):243–282, 2003), we use this expression to denote a landmark generated by a point or an object considered as punctual.) are used for representation on maps. As the observation of each point-like landmark gives only angular information about a bearing camera, a covariance matrix between point-like landmarks must be estimated in order to converge with a global scale estimation. However, as the computational complexity of covariance matrices scales in a quadratic way with the number of landmarks, the maximum number of landmarks that is possible to use is normally limited to a few hundred. In this paper, a visual SLAM system based on the use of what are called rigid-body 3D landmarks is proposed. A rigid-body 3D landmark represents the 6D pose of a rigid body in space (position and orientation), and its observation gives full-pose information about a bearing camera. Each rigid-body 3D landmark is created from a set of N point-like landmarks by collapsing 3N state components into seven state components plus a set of parameters that describe the shape of the landmark. Rigid-body 3D landmarks are represented and estimated using so-called point-quaternions, which are introduced here. By using rigid-body 3D landmarks, the computational time of an EKF-SLAM system can be reduced up to 5.5%, as the number of landmarks increases. The proposed visual SLAM system is validated in simulated and real video sequences (outdoor). The proposed methodology can be extended to any SLAM system based on the use of point-like landmarks, including those generated by laser measurement.  相似文献   

17.
Learning to select distinctive landmarks for mobile robot navigation   总被引:1,自引:0,他引:1  
In landmark-based navigation systems for mobile robots, sensory perceptions (e.g., laser or sonar scans) are used to identify the robot’s current location or to construct internal representations, maps, of the robot’s environment. Being based on an external frame of reference (which is not subject to incorrigible drift errors such as those occurring in odometry-based systems), landmark-based robot navigation systems are now widely used in mobile robot applications.The problem that has attracted most attention to date in landmark-based navigation research is the question of how to deal with perceptual aliasing, i.e., perceptual ambiguities. In contrast, what constitutes a good landmark, or how to select landmarks for mapping, is still an open research topic. The usual method of landmark selection is to map perceptions at regular intervals, which has the drawback of being inefficient and possibly missing ‘good’ landmarks that lie between sampling points.In this paper, we present an automatic landmark selection algorithm that allows a mobile robot to select conspicuous landmarks from a continuous stream of sensory perceptions, without any pre-installed knowledge or human intervention during the selection process. This algorithm can be used to make mapping mechanisms more efficient and reliable. Experimental results obtained with two different mobile robots in a range of environments are presented and analysed.  相似文献   

18.
定位技术是实现参赛机器人在比赛场地执行下一步指令的基础。根据大赛场地的特点,设计了巡线传感器和基于PID算法的巡线算法,利用场地中经纬交叉的引导线作为主要定位依据,并结合行走电机的码盘,提出了"整数加小数"的思想来实现机器人在场地中的精确定位。实际测试中,该方法得到了机器人的准确的位置信息,实验证明了该方法的合理性和可行性。  相似文献   

19.
An enhanced topological mapping system for efficient and reliable navigation is presented. The map has a topological framework and some additional features. Firstly, it utilizes such rough metrical information as the length and orientation of the links. Secondly, it provides a reliable localization algorithm with which the robot first finds the interval describing the robot’s probable location by estimating the projected traveled distance using dead reckoning and then fine-tunes the estimation using landmark detection modules. Finally, it provides a planning algorithm with which the robot’s path is chosen so that the robot reaches the goal location as fast as possible without losing its way despite using such imprecise sensors as ultrasonic range finders.We have implemented and tested the proposed mapping system both on a simulator and a real mobile robot, the CAIR-2. This paper also describes landmark detection modules that utilize ultrasonic range finders. Although landmark detection modules are too simple and imprecise to estimate position by themselves, these experiments show that the proposed mapping system can reliably guide robots.  相似文献   

20.
本文提出了一种基于可移动界标的微机器人的位置和角度的测量方法。测量时在机器人上装有PSD,把三个激光装置当作界标。这种方法适合于自动运动的机器人。测量面积取决于装有激光的线性平台的长度。本文从计算和实验两个方面对于所提出的可移动界标的方法的精确性进行了评价,得出了激光装置设置的精确性影响测量精确性的结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号