首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The effects of meteorological variables and tree species on stemflow chemistry were investigated within a mixed oak-beech stand during the leafed and the leafless seasons. Stemflow was collected after each rain event. For each investigated ion (H(+), Mg(2+), Ca(2+), K(+), NH(4)(+), Na(+), Cl(-), NO(3)(-), SO(4)(2-)), mixed linear models were used to analyse the effects of the rain volume (R) and of the length of the preceding dry period (ADP) on net stemflow ion fluxes as well as to assess the effect of tree size on these relationships. The models generally explained more than 70% of the total variability. The product between trunk circumference and tree height (C130Htot) explained most of the inter-individual variability, except for oak during the leafed season for which the effect of tree size was not significant or very limited. On the other hand, besides R and ADP, other rain event characteristics like wind force and direction were suggested to also partly explain the inter-event variability. For each season, net stemflow ion fluxes tended to increase with increasing R and ADP, whose coefficients were interpreted as leaching and dry deposition rates, respectively; exceptions were negative exchange rates (i.e. absorption) for NH(4)(+) and NO(3)(-) during the leafless period and for H(+) during the leafed season. Moreover, when it appeared significant, the effect of tree size corresponded to an increase of leaching, absorption and/or dry deposition rates as C130Htot increased. Exchange rate estimates were generally higher for the leafless season compared with the leafed period as well as for beech compared with for oak. Dry deposition rate estimates were generally higher for the leafless season compared with the leafed period. Differences in dry deposition rates between both species were particularly pronounced for the leafless season with much higher estimates for beech compared with oak.  相似文献   

2.
The region of the investigated receptor is situated in the southern part of the Adriatic Sea in the Mediterranean. The measuring station is located on the seashore, which, being considered as a border area, is representative for the qualitative and quantitative estimation of the influence of marine and continental aerosols on the content of major ions in precipitation. In the sampling period, precipitation in the region of the investigated receptor was more abundant during the summer and autumn than during the winter and spring. The most frequent precipitation heights were up to 20 mm, while high precipitation came exclusively from the continental region. The results of the measurements of ions readily soluble in water were used for the differentiation of marine from continental contributions of primary and secondary aerosols to their content in the precipitation. Using PCA, it was shown that main contribution of Cl(-), Na(+) and Mg(2+) came from primary marine aerosols, while the contribution from continental sources was dominant for the content of SO(4)(2-), NO(3)(-), NH(4)(+) and Ca(2+) in the precipitation. The continental origin of Ca(2+) was from a primary source, while SO(4)(2-), NO(3)(-) and NH(4)(+) were representatives of secondary aerosols produced by reactions between acid oxides and alkaline species in the atmosphere, but SO(4)(2-) and NO(3)(-) also exist in the precipitation as free acids. The origin of the trace elements Cd, Cu, Pb and Zn in the precipitation came from anthropogenic emission sources. The results obtained in this work are based on experimental data from 609 samples collected during the period 1995-2000.  相似文献   

3.
Chemical profiles for particle emissions are needed for source apportionment studies using the chemical mass balance (CMB) receptor model. Source measurements of geological sources, motor vehicle exhaust, vegetative burning (e.g. asparagus, field burning, charbroil cooking), and industrial sources (e.g. oil-fueled glass plant, manure-fueled power plants) were acquired as part of the Imperial/Mexicali Valley Cross Border PM10 Transport Study in 1992. Six different source sampling techniques (i.e. hot- and diluted-exhaust sampling, ground-based source sampling, particle sweeping/grab sampling, vacuum sampling, and laboratory resuspension sampling) were applied to acquire filter samples of PM 2.5 and PM10 (particulate matter with aerodynamic diameters < 2.5 and 10 microm, respectively). Filter samples were analyzed for mass by gravimetry, elements (Na to U) by X-ray fluorescence, anions (Cl(-), NO3(-), SO4(=)) by ion chromatography, ammonium (NH4(+)) by automated colorimetry, soluble sodium (Na+) and potassium (K+) by atomic absorption spectrophotometry, and organic and elemental carbon (OC, EC) by thermal/optical reflectance. Concentration data were acquired for a total of approximately 50 chemical species. Elevated abundances of crustal components (Al, Si, K, Ca, Fe) from geological material, carbon (OC, EC) and trace elements (Br, Pb) from vehicle exhausts, carbon (OC, EC) and ions (K(+), Cl(-)) from vegetative burning, ions (SO4(=), NH4(+), Na(+), K(+), Cl(-)) and elements (Cl, Se) from a manure-fueled power plants, and sulfur and trace elements (Na(+), Pb, Se, Ni, V) from an oil-fueled glass plant were found in the resulting source profiles. Abundances of crustal species (e.g. Al, Si, Ca) in the Imperial/Mexicali Valley geological profiles are more than twice those found in central and southern California. Abundances of lead in motor vehicle exhausts indicate different vehicle fleets in border cities. Emission profiles from field burning and charbroil cooking specific to the border area show that a majority (>60%) of emissions are comprised of carbon, with high organic to total carbon ratios (0.93 to 0.97). Abundances of sulfate and ammonium account for nearly 60% of the manure-fueled power plant's emissions. Elevated levels of metals (Na(+), Pb, Cd, Se) and byproducts of petroleum combustion (S, Ni, V) were found in the oil-fueled glass plant's emissions.  相似文献   

4.
Gaseous and particulate matter measurements were performed from January 1999 to December 2001 to assess seasonal and diurnal patterns of air pollutions in the Lanzhou Valley, China. The objectives are the determination of the temporal variability of total suspended particulate (TSP) matter and PM10 levels, and their relationship with the SO2 and NOx emissions and desert dust intrusions from the dust sources in the Hexi Corridor in Gansu Province. The results showed that concentrations of gaseous and particulate pollutants undergo seasonal variations characterized by a winter maximum levels for SO2 (0.094-0.208 mg/m3) and NO2 (0.068-0.089 mg/m3) and a spring maximum levels for TSP (0.885-1.037 mg/m3). Linear regression analysis indicated that the diurnal mean TSP/PM10 ratio may approximate to 3.0, and that the annual NO2/NOx ratio was approximately 0.86, with its highest monthly average of 0.91 in June and its lowest monthly average of 0.788 in January. The origin of PM10 episodes was investigated by correlating the PM10 episodes in the Lanzhou Valley with the high wind speeds in Jinchang (dust sources) in the Hexi Corridor, and also, by comparing the PM10 levels with the SO2 and NOx concentrations. Most of the 'high PM10 episodes' (1-h mean maximum >1.0 mg/m3) were attributed to the desert dust intrusions from the Hexi Corridor. The influence of the industrial and domestic emissions in the PM10 levels was evidenced during most of the periods with the PM10 levels less than 1.0 mg/m3.  相似文献   

5.
The application of Fe(III), in combination with sediment oxidation by NO(3)(-), is an accepted procedure to manage stratified eutrophic lakes by controlling the phosphorus release from sediments into overlying water. Depox(R), a newly developed compound, consisting of Fe(III) and NO(3)(-), has a storage effect for NO(3)(-). NO(3)(-) is released slowly, hence the disadvantageous high solubility of NO(3)(-) in water can be retarded. The compound was added to water as a suspension which quickly flocculated and precipitated. Within 3 weeks, NO(3)(-) was desorbed from the Depox(R) compound in deionized water. After application in lakes, the NO(3)(-) availability on the sediment surface was prolonged for 2 months. After treatment, P release from the sediment and microbial metabolism were investigated under laboratory conditions as well as in the mesocosm. P release was almost stopped in both cases during the experiment. SO(4)(2-) consumption was significantly lower after Depox(R) addition, and CH(4) production was completely suppressed by Depox(R) treatment in the laboratory, whereas in the enclosures SO(4)(2-) and also CH(4) concentrations at the sediment water interface did not change significantly between treated enclosures and controls.  相似文献   

6.
The level of dissolved aluminum and its chemical forms in soil solutions consecutively collected by a porous cup vacuum sampler were monitored over a period from January 2001 to December 2001 at a Japanese cedar (Cryptomeria japonica) forestry area susceptible to acid deposition to characterize current soil dynamics and to evaluate potential tree damages. Distinction and characterization of Al species with differential toxicities were performed by two complementary speciation techniques; cation-exchange HPLC with fluorometric detection using 8-hydroxyquinoline-5-sulfonic acid (HQS) and size-fractionation/inductively coupled plasma atomic emission spectrometry (ICP-AES). The concentrations of free Al (mainly Al3+ and Al(OH)2+) and inert Al (existing as the complexed and/or colloidal forms) ranged between 0-150 microM and 10-50 microM, respectively. The concentrations of inert Al were mostly below 40 microM during an annual cycle and showed no marked seasonal variation, while free Al concentrations showed a clear tendency to increase in the spring and summer seasons (in the period from April to August) probably due to the enhanced activity of microbial nitrification and the resultant soil acidification. Major cations and anions were also regularly determined and their seasonal changes were correlated with that of the dissolved Al concentration. Correlations between total Al (mainly existing as free Al) and the related species (and environmental conditions) were as follows: Al and Mg (R=0.96, P<0.01), Al and Ca (R=0.97, P<0.01), Al and NO3- (R=0.68, P<0.01), Al and temperature (R=0.68, P<0.01), Al and solution pH (R=-0.61, P<0.01), solution pH and NO3- (R=-0.65, P<0.01).  相似文献   

7.
To enhance animal productivity and maximize economic returns, mineral salts are routinely added to animal feed worldwide. Salinity and ionic composition of animal manure from intensive poultry and livestock farms in Guangdong province were investigated. Field experiments were conducted for six successive crops of Brassica Parachinensis to evaluate the possibility of secondary soil salinization by successive application of chicken manure (CM) and pigeon manure (PM) to a garden soil. The concentration of total soluble salts (TSS), which were mainly composed of sulfate and chloride of potassium and sodium, averaged 49.0, 20.6 and 60.3 g.kg(- 1) in chicken, pig and pigeon manure, respectively. After three crops, successive application of CM and PM increased soil concentrations of TSS, Na(+), K(+), Mg(2+), SO(4)(2-), and Cl(-) with application rate, resulting in a rise in soil salinity from low to medium levels and a slight reduction in soil pH. After heavy rains during the last three crops, soil TSS was reduced considerably and pH showed a slight increase. Concentrations of Cl(-) and Mg(2+) increased and Ca(2+) decreased at the end of the experiment, all leading to changes in the ionic composition of soil salinity. Manure with higher ion concentrations appeared to play a more important role in affecting ionic composition of soil salinity. The results further suggest that even in a region with abundant rainfall like Guangzhou, there is still potential risk for secondary soil salinization when high rates of CM and PM are applied.  相似文献   

8.
Field investigations of target air pollutants at two of the most famous temples in Hong Kong were conducted. The air pollution problems in these two temples during peak and non-peak periods were characterized. The target air pollutants included particulate matters (PM(10), PM(2.5)), volatile organic compounds (VOCs), carbonyl compounds, carbon monoxide (CO), nitrogen oxides (NO(x)), methane (CH(4)), non-methane hydrocarbons (NMHC), organic carbon (OC), elemental carbon (EC), and inorganic ions (Cl(-), NO(3)(-), SO(4)(2-), Na(+), NH(4)(+), and K(+)). The pollutant levels of the two temples during peak period were shown to be significantly higher than those during non-peak period. The highest average CO level was obtained at Temple 1 during peak period, which exceeded IAQO 8-h Good Class criteria. In general, the average PM(2.5)/PM(10) ratios were approximately 82%. The results revealed that the fine particulates (PM(2.5)) constituted the majority of suspended particulates at both temples. It was noted that formaldehyde was the most abundant carbonyl compounds, followed by acetaldehyde. At Temple 1 during peak period, the average benzene concentration exceeded almost 8 times more than Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [HKEPD, 2003. Guidance notes for the management of indoor air quality in offices and public places. Indoor air quality management group, The Government of the Hong Kong Special Administrative Region.] Good Class criteria. The average OC/EC ratios ranged from 2.6 to 17 in PM(10) and from 4.2 to 18 in PM(2.5) at two temples, which suggested that OC measured in these two temple areas may be due to both direct emission from incense burning and secondary formation by chemical reactions. The total mass of inorganic ions, organic carbon, and elemental carbon accounted for about 71% in PM(2.5) and 72% in PM(10).  相似文献   

9.
As epidemiological studies report associations between ambient air pollution and adverse birth outcomes, it is important to understand determinants of exposures among pregnant women. We measured (48-h, personal exposure) and modeled (using outdoor ambient monitors and a traffic-based land-use regression model) NO, NO(2), fine particle mass and absorbance in 62 non-smoking pregnant women in Vancouver, Canada on 1-3 occasions during pregnancy (total N=127). We developed predictive models for personal measurements using modeled ambient concentrations and individual determinants of exposure. Geometric mean exposures of personal samples were relatively low (GM (GSD) NO=37 ppb (2.0); NO(2)=17 ppb (1.6); 'soot', as filter absorbance=0.8 10(-5) m(-1) (1.5); PM(2.2)=10 microg m(-3) (1.6)). Having a gas stove (vs. electric stove) in the home was associated with exposure increases of 89% (NO), 44% (NO(2)), 20% (absorbance) and 35% (fine PM). Interpolated concentrations from outdoor fixed-site monitors were associated with all personal exposures except NO(2). Land-use regression model estimates of outdoor air pollution were associated with personal NO and NO(2) only. The effects of outdoor air pollution on personal samples were consistent, with and without adjustment for other individual determinants (e.g. gas stove). These findings improve our understanding of sources of exposure to air pollutants among pregnant women and support the use of outdoor concentration estimates as proxies for exposure in epidemiologic studies.  相似文献   

10.
An analysis of atmospheric gases and particles during periods of land and sea breezes in a coastal city in southwest Mexico indicates limited removal of total particle mass by deposition during periods when the air resides over the ocean. The average PM(2.5) mass concentrations for land and sea breeze samples were 25+/-1.0 and 26+/-1.0 microg m(-3), respectively. The average sum of the ion concentrations (NH(4)(+), SO(4)(2-), NO(3)(-), Na(+), Cl(-)) were 10 and 11.8 microg m(-3) for the samples taken during land and sea breeze periods. The average total carbon concentrations were 6.0 and 5.3 microg m(-3) for land and sea breeze periods. The mass of sulfate in particles of ocean origin, 3.3+/-2.8 microg m(-3), is marginally higher than those originating from the land, 2.0+/-0.8 microg m(-3), presumably as a result of the conversion of SO(2) recirculated from the city. The fraction of sulfate, nitrate and ammonium ions in rainwater samples is almost a factor of two higher than the fraction measured on filtered air samples. The rainwater also contains significant concentrations of elemental and organic carbon. This study, although extending over a period of only 15 days, with limited chemical samples, suggests that recirculation of anthropogenic particles from coastal cities should be taken into consideration when diagnosing and predicting air quality in such regions.  相似文献   

11.
In this paper we investigate the impact of nitrate (NO(3)(-)) concentration and temperature on the production of carbon dioxide (CO(2)), methane (CH(4)) and nitrous oxide (N(2)O). We studied sediment collected during spring, summer and autumn from a constructed pond in South Sweden. Homogenised sediment samples were dark incubated in vitro under N(2) atmosphere at 13 degrees C and 20 degrees C after addition of five NO(3)(-) concentrations, between 0 and 16 mg NO(3)(-)-N per litre. We found higher net production of N(2)O and CO(2) at the higher temperature. Moreover, increased NO(3)(-) concentrations had strong positive impact on the N(2)O concentration, but no effect on CH(4) and CO(2) production. The lack of response in CO(2) is suggested to be due to the use of alternative oxidants as electron acceptors. Interaction between NO(3)(-) and temperature suggests a further increase of N(2)O net production when both NO(3)(-) and temperature are high. Our interpretation of the CH(4) data is that at high concentrations of NO(3)(-) temperature is of less importance for CH(4) production. We also found that at 13 degrees C CH(4) production was substrate limited and that the addition of acetate increased CH(4) as well as CO(2) production. There was a seasonal effect on gas production potential, with more CH(4) and N(2)O produced in spring than in summer. Re-calculation of the gas concentrations into global warming potential (GWP) units (i.e. CO(2), CH(4), and N(2)O transferred to CO(2) equivalents) shows that GWP increases with temperature. However, under environmental conditions generally occurring in South Swedish ponds, i.e. low temperature and high NO(3)(-) concentration during spring and high temperature and low NO(3)(-) concentration during summer, NO(3)(-) concentration is of minor importance.  相似文献   

12.
Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.  相似文献   

13.
Epidemiological studies of particulate matter (PM) have associated PM mass, as well as certain individual components of PM such as secondary particulate with adverse human health effects. For example genotoxic effects attributed to PM may relate to the content of organic compounds but also to the oxidative DNA damage generated by transition metals like iron. However the exact physiochemical mechanism by which PM produces adverse effects is not clear. The aims of this study were to evaluate (1) concentrations of PM10, (2) amounts of bioavailable iron associated with PM10, (3) amounts of secondary particulate expressed as SO4(=) and NO3(-) and (4) the mutagenic activities of PM10 organic extracts. Sampling was carried out in a meteochemical station located in Torino, a northern Italian city with high levels of PM10. The mean PM10 concentration in the considered period was 46.1+/-28.8 microg/m3, the iron mean concentration was 0.83 microg/m3 (+/-0.65 microg/m3) and the bioavailable Fe was 5.7% (+/-4.4%). The data showed that secondary particulate matter (as sum of sulfates and nitrates) constituted about 47% of PM10 total mass. Both iron and secondary species concentrations were positively associated with PM10 levels. Seasonal variations of PM10 concentration, iron level and secondary species amount were significant. Samples were tested for mutagenicity with Salmonella typhimurium strains TA98 and TA100, with and without metabolic activation and a positive response was observed especially for TA98. There were positive statistical associations between mutagenicity and PM10, bioavailable iron, sulfates and nitrates concentrations. Therefore, these results showed the usefulness of this biological approach for monitoring PM10.  相似文献   

14.
This study has investigated the influence of synoptic weather patterns and long-range transport episodes on the concentration levels of airborne particulate matter (TSP, PM10 and PM2.5) and some major ions (SO(4)(2-), NO(3)(-) and NH(4)(+)) at a background rural station in central Spain. Air mass back-trajectories arriving at the site in 1999-2005 have been analysed by statistical methods. First, cluster analysis was used to group trajectories into 8 clusters depending on their direction and speed. Meteorological scenarios associated to each cluster have been obtained and interpreted. Then, the incidence of different air mass transport patterns on particle concentrations and composition recorded at this station was evaluated. This evaluation included PM10 and PM2.5 concentrations and chemical composition data, obtained at three representative sites of the Madrid air basin during sampling campaigns carried out in the course of the 1999-2005 period. Finally, a residence time analysis of trajectories was also performed to detect remote sources and transport pathways. Significantly elevated concentrations of TSP and PM10 were observed for Northern African flows as a consequence of the transport of mineral dust. Significant inter-cluster differences were also observed for PM2.5 and secondary inorganic compounds, with the highest concentrations associated with low baric gradient situations and Southern European flows. The residence time analysis confirmed that current TSP and PM10 concentrations in central Spain are likely to be influenced significantly by long-range transport of desert dust from different desert regions in North Africa. Furthermore, emissions from continental Europe with a high time of residence in the western and central areas of the Mediterranean basin, seem to significantly influence PM2.5 and secondary inorganic aerosol concentrations in this region.  相似文献   

15.
Carbon monoxide (CO), nitrogen oxide (NO(x)), hydrocarbon (HC), sulfur oxide (SO(2)), particulate matter <10 microm (PM(10)), and 57 VOC species of emissions were confirmed in a freeway tunnel in southern Taiwan. Emission factors were 1.89 (CO), 0.73 (NO(x)), 0.46 (HC), 0.02 (SO2) and 0.06 (PM(10)) g/km-vehicle for all vehicle fleets. Heavy-duty truck and trailer vehicles contributed 20% of the emissions on workdays and 9.5% on weekends in this study. Paraffins and aromatics were the main VOC groups in the tunnel. Isopentane, toluene, n-pentane, isoprene, 2,3-dimethylbutane, acetone, 2-methylpentane, 1-hexene, 1,2,4-trimethybenzene, 1-butene and propene emissions were the major VOC species. Their emission factors were over 10 mg/km-vehicle. Rainfall and high humidity in the tunnel could have reduced the VOC concentrations and increased the portion of aromatics. In addition to paraffins, olefins, and aromatic compounds, oxygenated compounds (i.e., acetone) were found. The pollutant ratios between the inside center and the outside of the tunnel were about 2-3 for CO, SO2, and PM(10) and 42 for NO(x). In addition, the emission factors of the vehicles could reflect real-world vehicle emissions on the highway and be used as baseline information for development of a vehicle control strategy.  相似文献   

16.
In this study, the hourly variations of the mass concentrations of PM10, SO2, NO(x) and O3 at three sampling sites were observed in Beijing during dust storm occurrence period in April 2000. The PM2.5 samples were simultaneously collected. By comparing the hourly variations of the pollutant concentrations before, during and after dust storm event and haze pollution episode, the variation characteristics of the mass concentrations of PM10, SO2, NO(x) and O3 during dust storm events were presented. The results show that the mass concentration of PM10 reached 1500 microg m(-3) during dust storm events on April 6 and 25, 2000, which was 5-10 times that of the non-dust weather conditions, and this period of high mass concentration of PM10 lasted for about 14 h, and then the concentration level prior to the dust event was recovered in 6-h time period. Due to the strong wind, the concentrations of SO2, NO(x), NO2 and O3 during dust storm period were maintained at low levels, which was significantly different from those on non-dust storm and haze pollution conditions. A lot of coarse particles as well as a very large amount of fine particles were contained in the atmospheric particulates during dust storm period, and the concentration level of PM2.5 was comparable to that during haze pollution episode. During the dust storm period, the PM2.5 concentration was approximately 230 microg m(-3), accounting for 30% of the total PM10 mass concentration, was four times that of non-dust weather conditions, and the crustal elements constituted about 66.4% of the chemical composition of PM2.5 while sulfate and nitrate contributed much less, which was quite different from the chemical composition of PM2.5 primarily constituted by sulfate, nitrate and organics on haze pollution day.  相似文献   

17.
The dependence of aerosol optical depth (AOD) on air particulate concentrations in the mixing layer height (MLH) was studied in Budapest in July 2003 and January 2004. During the campaigns gaseous (CO, SO(2), NO(x), O(3)), solid components (PM(2.5), PM(10)), as well as ionic species (ammonium, sulfate and nitrate) were measured at several urban and suburban sites. Additional data were collected from the Budapest air quality monitoring network. AOD was measured by a ground-based sun photometer. The mixing layer height and other common meteorological parameters were recorded. A linear relationship was found between the AOD and the columnar aerosol burden; the best linear fit (R(2)=0.96) was obtained for the secondary sulfate aerosol due to its mostly homogeneous spatial distribution and its optically active size range. The linear relationship is less pronounced for the PM(2.5) and PM(10) fractions since local emissions are very heterogeneous in time and space. The results indicate the importance of the mixing layer height in determining pollutant concentrations. During the winter campaign, when the boundary layer decreases to levels in between the altitudes of the sampling stations, measured concentrations showed significant differences due to different local sources and long-range transport. In the MLH time series unexpected nocturnal peaks were observed. The nocturnal increase of the MLH coincided with decreasing concentrations of all pollutants except for ozone; the ozone concentration increase indicates nocturnal vertical mixing between different air layers.  相似文献   

18.
Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.  相似文献   

19.
In order to achieve stable groundwater levels, an equilibrium between the use of groundwater for drinking water production and natural or artificial groundwater recharge by infiltration is needed. Local governments usually require that the composition of the water used for artificial recharge is similar to the surface water that is naturally present in the specific recharge area. In this paper, electrodialysis (ED) and nanofiltration were evaluated as possible treatment technologies for surface water from a canal in Flanders, the North of Belgium, in view of infiltration at critical places on heathlands. Both methods were evaluated on the basis of a comparison between the water composition after treatment and the composition of local surface waters. The treatment generally consists of a tuning of pH and the removal of contaminants originating from industrial and agricultural activity, e.g., nitrates and pesticides. Further evaluation of the influence of the composition of the water on the characteristics of the artificial recharge, however, was not envisaged. In a case study of water from the canal Schoten-Dessel, satisfactory concentration reductions of Cl(-), SO(4)(2-), NO(3)(-), HCO(3)(-), Na(+), Mg(2+), K(+) and Ca(2+) were obtained by ultrafiltration pretreatment followed by ED. Nanofiltration with UTC-20, N30F, Desal 51 HL, UTC-60 and Desal 5 DL membranes resulted in an insufficient removal level, especially for the monovalent ions.  相似文献   

20.
Dependence of urban air pollutants on meteorology   总被引:2,自引:0,他引:2  
Dependence of air pollutants on meteorology is presented with the aim of understanding the governing processes pollutants phase interaction. Intensive measurements of particulate matter (PM10) and gaseous materials (e.g., CO, NO2, SO2, and O3) are carried out regularly in 2002 at 14 measurement sites distributed over the whole territory of Great Cairo by the Egyptian Environmental Affairs Agency to assess the characteristics of air pollutants. The discussions in this work are based upon measurements performed at Abbassiya site as a case study. The nature of the contributing sources has been investigated and some attempts have been made to indicate the role played by neighboring regions in determining the air quality at the site mentioned. The results hint that, wind direction was found to have an influence not only on pollutant concentrations but also on the correlation between pollutants. As expected, the pollutants associated with traffic were at highest ambient concentration levels when wind speed was low. At higher wind speeds, dust and sand from the surrounding desert was entrained by the wind, thus contributing to ambient particulate matter levels. We also found that, the highest average concentration for NO2 and O3 occurred at humidity相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号