首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO3 and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO3 as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO3 dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO3 forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO3 precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.  相似文献   

2.
Permeable reactive barriers (PRBs) are now an established approach for groundwater remediation. However, one concern is the deterioration of barrier material performance due to pore clogging. This study sought to quantify the effect of pore clogging on the alteration of the physical porous architecture of two novel potential PRB materials (clinoptilolite and calcified seaweed) using image analysis of SEM-derived images. Results after a water treatment contaminated with heavy metals over periods of up to 10 months identified a decrease in porosity from c. 22% to c. 15% for calcified seaweed and from c. 22% to c. 18% for clinoptilolite. Porosity was reduced by as much as 37% in a calcified seaweed column that clogged. The mean pore size (2D) of both materials slightly decreased after water treatment with c. 11% reduction in calcified seaweed and c. 7% reduction in clinoptilolite. An increase in the proportion of crack-shaped pores was observed in both materials after the contaminated water treatment, most noticeably in the bottom of columns where contaminated water first reacted with the material. The distribution of pores (within a given image) derived from the distance transform indicated the largest morphological differences in materials was recorded in calcified seaweed columns, which is likely to impact significantly on their performance as barrier materials. The magnitude of porosity reduction over a short time period in relation to predicted barrier longevity suggest these and similar materials may be unsuited for barrier installation in their present form.  相似文献   

3.
The diffusion pathways of porous sandstone were examined by a three-dimensional (3-D) imaging technique based on X-ray computed tomography (CT) using the SPring-8 (Super Photon ring-8 GeV, Hyogo, Japan) synchrotron radiation facility. The analysis was undertaken to develop better understanding of the diffusion pathways in natural rock as a key factor in clarifying the detailed mechanism of the diffusion of radionuclides and water molecules through the pore spaces of natural barriers in underground nuclear waste disposal facilities. A cylindrical sample (diameter 4 mm, length 6 mm) of sandstone (porosity 0.14) was imaged to obtain a 3-D image set of 450(3) voxels=2.62(3) mm(3). Through cluster-labeling analysis of the 3-D image set, it was revealed that 89% of the pore space forms a single large pore-cluster responsible for macroscopic diffusive transport, while only 11% of the pore space is made up of isolated pores that are not involved in long-range diffusive transport. Computer simulations of the 3-D diffusion of non-sorbing random walkers in the largest pore cluster were performed to calculate the surface-to-volume ratio of the pore, tortuosity (diffusion coefficient in free space divided by that in porous rock). The results showed that (i) the simulated surface-to-volume ratio is about 60% of the results obtained by conventional pulsed-field-gradient proton nuclear magnetic resonance (NMR) laboratory experiments and (ii) the simulated tortuosity is five to seven times larger than the results of laboratory diffusion experiments using non-sorbing I(-) and Br(-). These discrepancies are probably attributed to the intrinsic sample heterogeneity and limited spatial resolution of the CT system. The permeability was also estimated based on the NMR diffusometry theory using the results of the random walk simulations via the Kozeny-Carman equation. The estimated permeability involved an error of about 20% compared with the permeability measured by the conventional method, suggesting that the diffusometry-based NMR well logging with gradient coils is applicable to the in-situ permeability measurement of strata. The present study demonstrated that X-ray CT using synchrotron radiation is a powerful tool for obtaining 3-D pore structure images without the beam-hardening artifacts inevitable in conventional CT using X-ray tubes.  相似文献   

4.
Pore-scale processes govern fundamental behavior in multiphase porous media systems. A high-resolution, three-dimensional image of the interior of a multiphase porous media system was obtained using synchrotron X-ray tomography. The system was imaged at a resolution of 12.46 mum following entrapment of the nonwetting phase at residual saturation. First, the physically representative network structure of the porous media system is extracted from the void space. This provides a direct mapping of the pore bodies and throats and enables pore-level calculations of coordination numbers, aspect ratios, and pore body and throat correlations. Next, algorithms developed to calculate properties of the entrapped nonwetting phase, such as volume, sphericity, interfacial area, and orientation, are applied to the residual nonwetting phase blobs. Finally, correlations between the pore network structure and nonwetting phase characteristics are examined. As expected, it was found that the nonwetting phase was trapped primarily in the largest pore spaces, the pore bodies with the highest aspect ratios, and the pore bodies with the highest coordination numbers. This work shows that, while there may be limitations related to the ability to capture REV-sized domains for some of the multiphase flow properties and phenomena, high-resolution X-ray tomography is able to provide the high quality datasets needed to observe and quantify the pore-scale phenomena and processes that govern multiphase flow in unconsolidated porous media systems.  相似文献   

5.
The operating life of an Fe(0)-based permeable reactive barrier (PRB) is limited due to chemical reactions of Fe(0) in groundwater. The relative contributions from mineral precipitation, gas production, and microbial activity to the degradation of PRB performance have been uncertain. In this controlled field study, nitrate-rich, site groundwater was treated by Fe(0) in large-volume, flow-through columns to monitor the changes in chemical and hydraulic parameters over time. Tracer tests showed a close relationship between hydraulic residence time and pH measurements. The ionic profiles suggest that mineral precipitation and accumulation is the primary mechanism for pore clogging around the inlet of the column. Accumulated N(2) gas generated by biotic processes also affected the hydraulics although the effects were secondary to that of mineral precipitation. Quantitative estimates indicate a porosity reduction of up to 45.3% near the column inlet over 72 days of operation under accelerated flow conditions. According to this study, preferential flow through a PRB at a site with similar groundwater chemistry should be detected over approximately 1 year of operation. During the early operation of a PRB, pH is a key indicator for monitoring the change in hydraulic residence time resulting from heterogeneity development. If the surrounding native material is more conductive than the clogged Fe-media, groundwater bypass may render the PRB ineffective for treating contaminated groundwater.  相似文献   

6.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   

7.
Abstract

Leaching studies of mecorprop (R,S)‐2‐(4‐chloro‐2‐methylphenoxy)propanoic acid, and dichlorprop, (R,S)‐2‐(4‐chloro‐2,4‐dichlorophenoxy) propanoic acid, under saturated conditions were conducted in unamended and amended soil columns. The purpose of the study was to investigate the leaching of these herbicides in three type of soils and the exogen organic matter effect on this process. The leaching patterns could be related to variation in the soil texture and diffusion processes of the herbicides into micropores within the walls of conducting pore. The leaching rate in the amended soil columns decreased with the addition of organic matter. The breakthrough curves (BTC) of these herbicides in the leachates of the amended soil columns were wider and more diffused than the BTC obtained for the corresponding unamended soil. The theoretical BTC overestimated the pore volume required for the displacement of these pesticides from the soil column. This may be due to the differences in the adsorption process between the bacth and soil columns methods  相似文献   

8.
Geophysical methods have been proposed as technologies for non-invasively monitoring geochemical alteration in permeable reactive barriers (PRBs). We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in Fe0 columns using (a) Na2SO4, and (b) NaHCO3 plus CaCl2 mixture, solutions. At the influent interface where the reactions were most severe, a contrasting time-lapse electrical response was observed between the two columns. Solid phase analysis confirmed the formation of corrosion halos and increased mineralogical complexity in the corroded sections of the columns compared to the minimal/non-corroded sections. We attribute the contrasting time-lapse signatures to the differences in the electrical properties of the mineral phases formed within the two columns. While newly precipitated/transformed polarizable and semi-conductive iron oxides (mostly magnetite and green rust) increase the polarization and conductivity of the sulfate column, the decrease of both parameters in the bicarbonate column is attributed to the precipitation of non-polarizable and non-conductive calcite. Our results show that precipitate mineralogy is an important factor influencing the electrical properties of the corroded iron cores and must be considered if electrical geophysical methods are to be developed to monitor PRB barrier corrosion processes in situ.  相似文献   

9.
Pore structure of soot deposits from several combustion sources   总被引:5,自引:0,他引:5  
Rockne KJ  Taghon GL  Kosson DS 《Chemosphere》2000,41(8):1125-1135
Soot was harvested from five combustion sources: a dodecane flame, marine and bus diesel engines, a wood stove, and an oil furnace. The soots ranged from 20% to 90% carbon by weight and molar C/H ratios from 1 to 7, the latter suggesting a highly condensed aromatic structure. Total surface areas (by nitrogen adsorption using the Brunauer Emmett Teller, BET method) ranged from 1 to 85 m2 g(-1). Comparison of the surface area and meso-pore (pores 2-50 nm) surface area predicted by density functional theory (DFT) suggested that the soot was highly porous. Total meso-pore volume and surface area ranged from 0.004-0.08 cm3 g(-1) and from 0.33-6.9 m2 g(-1) respectively, accounting for up 33% of the BET surface area. The micro-pore volume (pores <2 nm) calculated from CO2 adsorption data (by DFT) ranged from 0.0009 to 0.013 cm3 g(-1) and micro-pore surface area was 3.1-41 m2 g(-1), accounting for 10-20% of the total intra-particle (meso-plus micro-pores) pore volume and 70-90% of the total intra-particle surface area. Higher pore volume and surface area values were computed using the Dubinin Radushkevich plot technique; ranging from 0.004-0.04 cm3 g(-1) to 11-102 m2 g(-1) for micro-pore volume and surface area, respectively. Comparison of the C/H ratio and the micro-pore structure showed a strong correlation, suggesting a relationship between the condensation of the skeletal structure and micro-porosity of the soot. These data contradict literature reports that soot particles are non-porous and are consistent with recent literature reports that soil organic matter has large micro-pore surface areas.  相似文献   

10.
镉溶液在压实黏土中迁移会引起黏土微观结构的变化。通过一系列扫描电子显微镜与低温氮吸附实验,观察了镉溶液污染黏土的表面微观形貌与孔隙结构的演化规律。扫描电子显微镜观察结果显示,受镉溶液污染严重的土柱上表面孔隙明显,土颗粒之间主要以点-点排列方式为主;而受镉溶液污染较弱的下表面,土颗粒之间主要以片-片状排列为主。低温氮吸附实验结果表明,Z=0 cm、Z=10 cm、Z=20 cm、Z=30 cm处,污染黏土吸附量分别为682.65、631.72、583.25和523.36 cm3/g。随土柱中土层深度的增大,黏土颗粒间微孔增多,二次孔减少,孔隙体积与比表面积减小。镉溶液污染黏土孔隙主要集中在10 nm以下。  相似文献   

11.
J Cao  S Tao  B G Li 《Chemosphere》1999,39(11):1771-1780
The kinetics of the leaching process of Water Soluble Organic Carbon (WSOC) from an upland soil were studied in a column leaching experiment. The pattern of the leaching curve indicated multiphasic release kinetics. A conceptual model was proposed to divide capillary and gravitational pores. The translocation of organic carbon in soil during leaching occurs in four sequential steps. 1) degradation of insoluble organic carbon to form WSOC; 2) desorption into capillary pore water; 3) diffusion towards gravitation pore water; and 4) leaching by convection flow. The overall kinetics of the leaching process can be depicted using an equation with three additive terms for degradation, desorption/diffusion, and convection, respectively.  相似文献   

12.
An out-diffusion laboratory experiment using a non-reactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities. The superimposed porosity and mineral 2D maps act as computation grids to condition diffusion pathways. We focused on a Palmottu granite sample, in which the connected pore space has a composite microstructure with cracks linking microporous minerals and is above the percolation threshold. Three main results were achieved: (i) When compared to the fitting obtained with one coefficient (best mean square residual R = 1.6 x 10(-2)), diffusion is shown to be suitably characterised with two coefficients related to cracks and microporous minerals (best R = 6.5 x 10(-4)), (ii) rather than imposing a local apparent diffusion coefficient D(a) independent of the local porosity Phi, a best fit is obtained by applying Archie's relationship D(a) = D(0) x G with G = Phi(m) to each pixel of the calculation grids (G is the geometry factor, D(0) is the diffusion coefficient in free fluid, and m is Archie's exponent), and (iii) the order of magnitude of the fitted diffusion coefficient or Archie's exponents (m=0 for microcracks and m=1.82 for microporous minerals) is physically realistic.  相似文献   

13.
A simplified equation for specifying the optimum minimum length for commercial venturi scrubber throats is presented in this paper. This theoretical correlation is derived using an optimum velocity ratio (velocity of collector droplet at end of venturi throat to velocity of gas in throat) and is a function of throat gas velocity and liquid to gas ratio. This velocity ratio establishes the minimum throat length and is based on available literature data. Predicted venturi scrubber particle collection for throats specified by this procedure compare favorably with reported commercial venturi collection efficiencies and with modeled venturi efficiencies over the practical range of venturi scrubber operation.  相似文献   

14.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   

15.
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.  相似文献   

16.
Although progress has been made toward understanding the surface chemistry of granular iron and the mechanisms through which it attenuates groundwater contaminants, potential long-term changes in the solute transport properties of granular iron media have until now received relatively little attention. As part of column investigations of alterations in the reactivity of granular iron, studies using tritiated water (3H(2)O) as a conservative and non-partitioning tracer were periodically conducted to independently isolate transport-related effects on performance from those more directly related to surface reactivity. Hydraulic residence time distributions (HRTDs) within each of six 39-cm columns exposed to bicarbonate solutions were obtained over the course of 1100 days of operation. First moment analyses of the data revealed generally modest increases in mean pore water velocity (v) over time, indicative of decreasing water-filled porosity. Gravimetric measurements provided independent estimates of water-filled porosity that were initially consistent with those obtained from 3H(2)O tracer tests, although at later times, porosities derived from gravimetric measurements deviated from the tracer test results owing to mineral precipitation. The combination of gravimetric measurements and 3H(2)O tracer studies furnished estimates of precipitated mineral mass; depending on the assumed identity of the predominant mineral phase(s), the porosity decrease associated with solute precipitation amounted to 6-24% of the initial porosity. The accumulation of mineral and gas phases led to the formation of regions of immobile water and increased spreading of the tracer pulse. Application of a dual-region transport model to the 3H(2)O breakthrough curves revealed that the immobile water-filled region increased from initially negligible values to amounts ranging between 3% and 14% of the total porosity in later periods of operation. For the aged columns, mobile-immobile mass transfer coefficients (k(mt)) were generally in the range of 0.1-1.0 day(-1) and reflected a slow exchange of 3H(2)O between the two regions. Additional model calculations incorporating sorption and reaction suggest that although changes in HRTD can have an appreciable effect on trichloroethylene (TCE) transformation, the effect is likely to be minor relative to that stemming from passivation of the granular iron surface.  相似文献   

17.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

18.
In the present study, ordered mesocage hexagonal P6mm and cubic Pm3n aluminosilica nanoadsorbents with monolith-like morphology and micro-, meso-, and macro-pores were fabricated using a simple, reproducible, direct synthesis. Our results suggest that the aluminosilica nanoadsorbents attained the ordering and uniform hexagonal and cubic pores even at the high Si/Al ratio of 4. The acidity of nanoadsorbents significantly based on the amount of aluminum species in the walls of the silica pore framework. Aluminosilica nanoadsorbents were used as a removal of environmentally toxic aromatic amines, namely p-nitroaniline (p-NA), from wastewater. The loading amount of Bronsted acid sites, mesostructural geometries, and multi-directional pores (3D) of the aluminosilica adsorbents played a key factor in the enhancement of the coverage adsorbent surfaces and intraparticle diffusion of adsorbate molecules onto the network surfaces and into the pore architectures of monoliths. Significantly, we developed theoretical models to explain the 3D microscopic geometry and the pore orientation of aluminosilica monoliths. A key component of the nanoadsorbents is the ability to create revisable p-NA adsorption systems with multiple reuse cycles. However, simple treatment using an acidic aqueous solution was found to remove effectively the p-NA and to form “p-NA-free” pore surfaces without any mesostructural damage.  相似文献   

19.
A study was conducted to assess key factors to include when modeling porosity reductions caused by mineral fouling in permeable reactive barriers (PRBs) containing granular zero valent iron. The public domain codes MODFLOW and RT3D were used and a geochemical algorithm was developed for RT3D to simulate geochemical reactions occurring in PRBs. Results of simulations conducted with the model show that the largest porosity reductions occur between the entrance and mid-plane of the PRB as a result of precipitation of carbonate minerals and that smaller porosity reductions occur between the mid-plane and exit face due to precipitation of ferrous hydroxide. These findings are consistent with field and laboratory observations, as well as modeling predictions made by others. Parametric studies were conducted to identify the most important variables to include in a model evaluating porosity reduction. These studies showed that three minerals (CaCO3, FeCO3, and Fe(OH)2 (am)) account for more than 99% of the porosity reductions that were predicted. The porosity reduction is sensitive to influent concentrations of HCO3-, Ca2+, CO3(2-), and dissolved oxygen, the anaerobic iron corrosion rate, and the rates of CaCO3 and FeCO3 formation. The predictions also show that porosity reductions in PRBs can be spatially variable and mineral forming ions penetrate deeper into the PRB as a result of flow heterogeneities, which reflects the balance between the rate of mass transport and geochemical reaction rates. Level of aquifer heterogeneity and the contrast in hydraulic conductivity between the aquifer and PRB are the most important hydraulic variables affecting porosity reduction. Spatial continuity of aquifer hydraulic conductivity is less significant.  相似文献   

20.
A previously developed pore network model is used here to study the spontaneous and forced secondary imbibition of a NAPL-invaded sediment, as in the displacement of NAPL by waterflooding a mixed-wet soil. We use a 3D disordered pore network with a realistic representation of pore geometry and connectivity, and a quasi-static displacement model that fully describes the pore-scale physics. After primary drainage (NAPL displacing water) up to a maximum capillary pressure, we simulate secondary imbibition (water displacing NAPL). We conduct a parametric study of imbibition by varying systematically the controlling parameters: the advancing contact angles, the fraction of NAPL-wet pores, the interfacial tension, and the initial water saturation. Once the secondary imbibition is completed, the controlling displacement mechanisms, capillary pressures, relative permeabilities, and trapped NAPL saturations are reported. It is assumed that NAPL migrates into an initially strongly water-wet sediment, i.e., the receding contact angles are very small. However, depending on the surface mineralogy and chemical compositions of the immiscible fluid phases, the wettability of pore interiors is altered while the neighborhoods of pore corners remain strongly water-wet-resulting in a mixed-wet sediment. Here, we compare three different levels of wettability alteration: water-wet (advancing contact angles (20 degrees to 55 degrees), intermediate-wet (55 degrees to 120 degrees), and NAPL-wet (120 degrees to 155 degrees). The range of advancing contact angles and the fraction of NAPL-wet pores have dramatic effects on the NAPL-water capillary pressures and relative permeabilities. The spatially inhomogeneous interfacial tension has a minor impact on the trapped NAPL saturation and relative permeability to NAPL, and a slight effect on the relative permeability to water. The initial water saturation has a slight effect on the two-phase flow characteristics of water-wet sediments; however, with more NAPL-wet pores in the sediment, it starts to have a profound effect on the water and NAPL relative permeabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号