首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
《岩土力学》2017,(10):2962-2972
针对青海省引大通河济湟水河(引大济湟)工程频繁遭遇挤压大变形和卡机灾害难题,基于挤压大变形本构模型和全断面隧道掘进机(TBM)卡机事故预测分析理论,提出了挤压大变形和卡机计算方法,进行了引大济湟工程TBM掘进围岩挤压大变形与卡机计算,结果表明:(1)TBM穿越F5断层区段时,当扩挖间隙为10 cm时,开挖卸荷后护盾所受摩阻力将达到推进系统提供的最大推力,易发生卡机事故;(2)挤压变形、围岩-护盾接触面积和护盾所受摩阻力随停机时间不断增大,停机1 d内增大的速率越来越大,停机后7 d起,围岩流变速率和护盾所受摩阻力增加速率均减缓,直到停机后13 d时,围岩-护盾相互作用达到平衡,护盾所受摩阻力趋于稳定。同时为了防止和控制卡机事故,对该工程后续施工提出了最佳扩挖间隙和许可停机时间等卡机综合防控的3个对策:即扩挖间隙至少要增大到15 cm,此时停机初始时刻不发生卡机,许可停机时间为2 d;扩挖间隙增大到18 cm时,许可停机时间为4 d;扩挖间隙增大到20 cm时,就选取的围岩条件下,停机7 d内TBM基本不发生卡机,7 d后也很容易克服卡机。提出的卡机防控措施对引大济湟工程TBM安全高效掘进具有一定的指导意义,并得到工程实际控制对策的验证。  相似文献   

2.
随着隧道掘进机(tunnel boring machine, TBM)开挖隧道埋深逐渐加大,穿越的地层结构更加复杂,如何降低卡机风险成为亟待解决的问题。提出了一种基于牛顿迭代和有限元理论的TBM护盾?围岩相互作用荷载反演方法。该反演方法以护盾内表面测点应变测量值与计算值的误差作为目标函数,并引入Moore-Penrose广义逆对反演方程进行求解。采用了护盾外表面有限分区的策略,定义各分区节点荷载值为反演参数,可以方便地控制反演参数的数量。各分区内部荷载通过节点值插值得到,实现了护盾表面任意分布荷载的离散拟合。算例结果表明:该反演方法计算效率高,对观测值误差具有很好的免疫效果;能够有效地获取护盾外表面的荷载分布规律和摩阻力的大小,在一定程度上能够为现场安全掘进、卡机预警以及事故处理提供指导。同时,该反演算法也可以扩展到低维情况,对其他结构受力或者物理参数的反演具有一定的借鉴意义。  相似文献   

3.
被选做长距离地下隧洞施工的岩石掘进机(TBM)以快速施工优势明显著称,当遇到软弱围岩加断层破碎带时,常发生卡机等事故,面临工期延误等挑战。穿越元古界黑山头组砂质板岩等软弱岩体的上公山隧洞,施工中多次发生围岩大变形卡机等施工地质灾害。其中较严重的是在桩号4+439侧向扩挖过程中TBM后护盾出现变形裂缝的严重事故。采用X-衍射粘土矿物分析、岩体受力模型分析和有限元数值模拟方法,研究软弱围岩与TBM相互作用下莫尔圆和库伦强度曲线的关系变化,模拟断层出露于隧洞掌子面不同部位时所产生的位移变化。结果发现,断层出露于掌子面中部时顶拱位移最大,侧向扩挖状态下护盾变为有侧向约束的单轴压缩状态,使顶部受压,反分析得到后护盾刚度系数K=153.00 k N/mm。鉴于所研究软弱围岩和小角度交切断层等不利地质条件,TBM正常适用受太多影响使工期延误,最终剩余洞段被钻爆法所取代。  相似文献   

4.
为了研究隧洞纵向位移(LDP)释放率对双护盾隧洞掘进机(TBM)围岩变形及护盾压力的影响,在FLAC3D中采用应力释放法对LDP曲线实现了较好的控制,并指出采用计算时间步控制的缺陷,在考虑护盾与围岩之间不均匀间隙情况下,详细分析了应力释放率对TBM掘进中围岩LDP曲线变化规律、护盾所受挤压力及围岩塑性区的影响。得出了以下结论:(1)不同岩体力学参数下,LDP曲线受应力释放率的敏感程度不同;(2)随着应力释放率的逐渐增加,围岩LDP曲线特征及与TBM护盾相互接触的部位有所不同,TBM护盾接触挤压力和所受摩擦阻力逐渐增大;(3)护盾外围塑性区的形状与应力释放率和护盾与围岩之间的不均匀间隙有关,当在较大的应力释放率下,塑性区呈现自上而下逐渐减小的特征。  相似文献   

5.
吴圣智  王明年  于丽  刘大刚  黄群伟 《岩土力学》2018,39(11):3976-3982
回填层作为围岩和管片之间的连接部分,起到稳定衬砌、传递荷载、吸收变形等作用。护盾式TBM隧道施工过程中,回填层存在未注浆松散、注浆固结两个主要状态。回填层状态不同,回填层作用及管片受力特点也不同。研究采用相似模型试验分析不同状态下的回填层作用机制,通过研究得到了以下结论:回填层未注浆松散状态下,由于碎石的径向压缩与环向移动,围岩传递到管片上的荷载量值降低且分布较为均匀,此时回填层作为“可压缩层”,具有让压和均匀荷载的作用,能明显降低管片的受力和变形;回填层注浆固结后,回填层虽然能够承担少量的荷载与变形,但承载能力有限,主要作为围岩与管片之间的“传递层”,传递荷载与变形;对于挤压性围岩护盾式TBM隧道施工可适当应用回填层未注浆时的“可压缩性”,减小施工过程中管片受力与变形;对于浅埋及地铁隧道则应尽早注浆,使衬砌与围岩形成稳定的受力体系;回填层弹性模量的增加可提高回填层-管片组合体系支护刚度,但增加效果不明显。  相似文献   

6.
为研究挤压地层双护盾隧道掘进机(TBM)作用下围岩变形及应力场特征,采用FLAC3D建立了完整模型,并详细阐述了隧道掘进机(TBM)施工过程中的模拟方法,重点分析了隧洞纵横断面内围岩位移场、应力场、塑性区特征。模拟结果表明,两腰下部范围内的围岩与TBM护盾发生接触并产生挤压,拱顶并未接触;受刀盘与护盾连接处的尺寸高差和前后护盾的锥度影响导致仰拱围岩内出现3次加卸载,仰拱内部环向应力和径向应力均大于拱顶和两腰,而且其主应力方向与径向线斜交,受扰动剧烈,但仰拱下方70°范围内的围岩基本处于弹性状态;横向断面内围岩塑性区自上而下逐渐减小,且距掌子面越远塑性区范围越大,但后盾塑性区范围变化不大。  相似文献   

7.
温森  贺东青  杨圣奇 《岩土力学》2014,35(6):1727-1734
国内采用岩石隧道掘进机(简称TBM)施工的隧洞呈现深埋、超长趋势,变形引起的TBM卡机事故屡见不鲜,为了减少这些事故,可以预先对变形引起的TBM风险事故进行综合评价,因此,在单元风险研究的基础上对综合风险计算及评价准则进行研究。采用概率理论推导了变形引起的TBM风险事故的综合风险概率的计算模型,根据推导的模型可以近似计算出5类后果等级事故发生的概率;采用TBM的卡机时间与纯掘进时间的比值作为分级指标,结合以往TBM施工的统计数据划分工期损失后果等级,再结合风险的概率分级,建立变形综合风险评价准则;采用研究的理论,对工程选取段TBM施工卡机风险进行了两种工况下的计算分析。计算结果表明,施工时若不采取任何措施TBM施工风险比较大,但采用合理的措施之后风险可控制在可接受的范围内。  相似文献   

8.
TBM掘进技术发展及有关工程地质问题分析和对策   总被引:12,自引:1,他引:11  
通过对大量文献资料和工程实例的研究,论述了TBM(隧道掘进机)近半个世纪发展及其在隧道建设中的应用现状和问题。对大量国内外工程实例分析后发现优先采用TBM掘进技术已成为未来隧道建设总的发展趋势。从岩石力学和工程地质角度对岩石TBM掘进过程中遇到的诸如软岩大变形、突水、岩爆等不良工程地质问题导致卡机或管片变形、破损等工程事故进行了剖析,并对采用的工程处理措施作了总结对比。随着今后TBM掘进技术在我国大规模应用,对复杂工程地质条件的客观全面认识和施工方案的及时调整成为影响施工安全和经济效益的关键因素。  相似文献   

9.
深埋长隧道TBM施工关键问题探讨   总被引:2,自引:0,他引:2  
周建军  杨振兴 《岩土力学》2014,35(Z2):299-305
针对深埋长隧道开挖所面临的高水压、高地压、高地温、大变形、难支护等问题,分析总结传统钻爆法开挖与支护技术、全断面隧道掘进机(TBM)施工技术、TBM导洞扩挖技术应用中的优劣,TBM导洞扩挖法为深埋长隧道开挖提供了新的设计思路。由于深埋长隧道的建设环境与浅埋隧道建设环境存在显著差异,TBM施工将面临3个关键问题--岩爆问题、卡盾(大变形)问题和未准确探测前方地质而发生的施工事故(涌水、突泥等)。为揭示TBM施工过程中卡盾的存在性,分别针对某一特定地质条件下深埋软、硬岩TBM施工进行理论分析和数值模拟研究。结果表明,软岩地层TBM施工发生卡盾,而硬岩完整地层TBM施工未发生卡盾。  相似文献   

10.
隧道TBM开挖过程中经常会遇到复合岩层,在这种地质环境下,隧道掘进机(tunnel boring machine,简称TBM)开挖过程中的隧道围岩强度很难估计,隧道开挖掌子面和围岩容易发生坍塌。为了提高隧道掘进效率、预防事故发生,对开挖隧道围岩强度进行实时估算方面的研究很有必要。在重庆轨道九号线隧道TBM施工中,通过室内试验和现场实测数据发现,TBM推力FN与岩石强度成正比、TBM扭矩推力比T/FNT为扭矩)与贯入度p0.5成正比例关系。针对砂质泥岩、砂岩和灰岩组成的复合岩层,提出了一种利用现场实测推力FN和扭矩T的值来快速估算开挖隧道围岩强度的方法,进一步对TBM实测数据进行线性拟合,从而得到估算公式中两个常数α1α2的取值方法,并在10多个隧道实际工程中得到验证。结果表明,对于这种复合岩层地质环境,两个常数α1α2的值与滚刀数量n和滚刀直径d相关。该研究成果为实时快速估算开挖隧道围岩强度提供了一种新的切实可行的思路,能提高隧道TBM施工的可靠性和安全性,具有重要的应用价值。  相似文献   

11.
This is a case study of a Tunnel Boring Machine (TBM) jamming in a section of the Connection Works No. 7 tunnel of the Yellow River Diversion Project (YRDP) in China. Analysis of tunnel lithology, rock convergence by shearing, rock strength and ground stress, indicates that a high rate of convergence within an inter-layer shear zone in the lower part of an anticline was a dominant factor in the jamming. In addition, the shield encountered unfavorable tunnelling conditions in the form of wet clay, groundwater inflow, and cavities, coincident with tensile stresses in the lower part of an adjacent syncline. Based on these diagnoses, economical and quick measures were adopted, including additional excavation outside of the shield leaving free space to release the TBM. After 9 days of being jammed, the TBM was totally released and resumed normal excavation. This example highlights lessons learned from folding and inter-layer shear zone in TBM tunnelling.  相似文献   

12.
针对传统分类方法难以对围岩稳定性进行评价的问题,以护盾式全断面隧掘进机(TBM)施工隧洞的围岩稳定性评价为目标,在研究护盾式TBM施工特点的基础上,参照国内、外常用的围岩分类方法,选择了岩石的回弹值、刀盘推力、刀盘扭矩、片状岩渣含量、地下水渗流量和最大主应力与洞轴线的夹角作为围岩稳定性评判因素。采用模糊综合评判方法,建立围岩稳定性多因素评判模型,通过确定评判因素的权重向量选取隶属函数,进而对围岩稳定性进行定量评判,并将之应用到某工程双护盾TBM施工的围岩稳定性评判中。结果表明:序号1、2、3和4洞段对应的较稳定、较稳定、局部稳定性差和不稳定的最大隶属度分别为0.494、0.403、0.388、0.442,分别对应Ⅱ、Ⅱ、Ⅲ和Ⅳ类围岩;模糊综合评判方法合理,评判结果较为可靠。研究成果对护盾式TBM施工的围岩稳定性评价、围岩分类及支护方式选择等具有参考价值。  相似文献   

13.
针对全断面隧道掘进机(TBM)开挖过程掌子面岩体软硬交替变化的特点,以兰州水源地建设工程为背景,采用模型试验与数值模拟方法研究了复合地层TBM开挖过程隧洞围岩的动态响应规律。通过开展相似配比试验配制了不同围岩强度比的复合地层岩体相似材料,运用光纤光栅技术全程捕捉了隧洞开挖过程复合地层应变演化规律,并分析了隧洞围岩的宏观破裂形态。模型试验结果表明:TBM推进过程中复合地层应变变化规律体现了掌子面推进的空间效应,软岩部分应变要大于硬岩部分应变,且随着开挖步数的增加两种岩层应变差值越大;隧洞内岩体完全挖除后,围岩宏观破裂形态表明因复合地层岩体物理力学性质的差异,上覆软岩变形破坏较为严重,破裂和变形较为显著,在软、硬岩层交界面出现“变形不协调”现象。选取工程沿线某洞段的地质力学参数,基于破坏接近度(FAI)指标评价了隧洞开挖过程中复合地层围岩的稳定性,数值结果表明:开挖过程软岩中FAI变化较为明显,塑性区和破坏区分布范围更广,而下部硬岩受开挖扰动影响较小,只有拱底小范围岩体进入破坏状态。模型试验和数值结果均说明交替变化的掌子面岩体在开挖过程中其围岩在变形破坏等规律方面存在明显差异,因此,TBM在复合地层施工可采取重点部位监测预警、提前采取相应措施等手段,减少或避免卡机事故的发生。该研究成果对于指导复合地层TBM施工具有一定的借鉴和指导意义。  相似文献   

14.
使用隧道掘进机(TBM)开挖隧道时刀盘和盾体阻碍了对岩石状态的观察,这时可使用岩渣对岩石条件进行预测和评价。从滚刀破碎掌子面产生的岩渣中选取块状岩石进行点荷载试验可以获得岩石强度,但是受过滚刀损伤作用的岩石强度值与未受损伤的岩石强度值之间的关系尚不明确。从吉林引松供水工程TBM破岩产生的岩渣中挑选块状试样进行点荷载试验,同时在产生岩渣的相应位置钻取岩芯获取点荷载强度,与单轴抗压强度进行了对比,记录了取样地点地质状态、试样的尺寸、破碎状态以及等效断裂面积。结果表明:岩渣中的岩块受到滚刀作用产生的损伤强度值有所下降,为完整取芯试样的63.25%,原岩越完整受损程度越大;灰岩点荷载强度换算岩石单轴抗压强度系数约为25.3,直接使用岩渣时建议系数约为42.1;峰值荷载与等效断裂面积成正比;尺寸过大的试块往往与岩体原有裂隙有关,强度极低,不适宜用作点荷载试验。研究结果为TBM隧道现场快速获取岩石强度参数提供了方法和依据。  相似文献   

15.
TBM施工隧道仰拱预制块的力学特性研究   总被引:2,自引:0,他引:2  
周佳媚  高波  李志业 《岩土力学》2004,25(12):1973-1976
针对TBM施工隧道仰拱预制块的特殊结构,采用围岩-结构模式,进行了模拟施工动态的受力影响计算分析。计算结果表明,围岩初始应力场对仰拱受力有明显影响, 随着竖向压力的增大,仰拱中心的内、外侧应力均增大;随着水平压力的增大,仰拱中心内侧应力减小、外侧应力基本不变;减小复合衬砌结构中初期支护厚度以及变刚性接头为柔性接头均会改善仰拱受力。最后,用试验数据验证计算的正确性,其结论可供TBM施工隧道仰拱预制块的优化设计参考。  相似文献   

16.
Double shield TBMs are amongst the most technically sophisticated excavation machines in use by tunneling industry. However, using the shielded machine limits access to the walls for observation of ground conditions and presence of shield makes the machine susceptible to entrapment or seizure in weak rocks under high stresses which results in high convergence. To realistically evaluate the possibility of machine seizure in such grounds, the interaction between the rock mass and shields, lining and backfilling need to be understood. This study explains the application of numerical analysis for 3D simulation of mechanized tunneling by using a double shield TBM. For this purpose, a comprehensive numerical simulation is developed to systematically evaluate the potential of excessive ground convergence. Simulation results at five reference points on the tunnel circumference along the tunnel have been examined. The results are including longitudinal displacement profile (LDP) as well as contact force profiles (LFP) on both front and rear shields, frictional forces and required thrust to move the machine, stress history of ground, and estimated loading of the segments. The results also proved that numerical analyses can successfully be used for prediction of loads on the shield during excavation to assess risks of machine entrapment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号