首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 466 毫秒
1.
纳米Al2O3和Fe2O3填充尼龙PA1010的摩擦磨损行为   总被引:7,自引:3,他引:7  
采用模具挤压成型方法制备了纳米Al2O3和Fe2O3填充PA1010尼龙复合材料,采用MM-200型摩擦磨损试验机考察了所制备的尼龙复合材料在干摩擦条件下同45#钢对摩时的摩擦磨损行为。研究结果表明,填充纳米Al2O3使得PA1010尼龙复合材料的摩擦系数增大,而填充纳米Fe2O3使得摩擦系数降低;纳米Al203和Fe2O3填充尼龙复合材料的耐磨性能优于尼龙;当纳米填料的质量分数从10%提高到20%时,纳米Fe2O3填充尼龙的磨损量增大,纳米Al2O3填充尼龙的磨损量无明显变化,2种填料填充尼龙复合材料的摩擦系数变化不大.纳米Fe2O3填充尼龙复合材料同45#钢对摩时主要呈现粘着磨损和轻微疲劳磨损特征,而纳米Al2O3填充尼龙复合材料呈现脆性疲劳开裂特征。纳米Fe2O3填充尼龙复合材料在偶件磨损表面形成的转移膜更加均匀和连续,故其减摩抗磨性能优于纳米Fe2O3填充尼龙复合材料。  相似文献   

2.
采用MM - 2 0 0型摩擦磨损试验机考察了载荷及对摩偶件表面SiC粒度对超高分子量聚乙烯及其纳米Al2 O3填充复合材料摩擦磨损性能的影响 ,利用扫描电子显微镜观察磨损表面形貌并分析了其磨损机理 .结果表明 :纳米Al2 O3 可以提高超高分子量聚乙烯的硬度及抗磨粒磨损性能 ;随着载荷的增大 ,超高分子量聚乙烯及纳米填充复合材料的磨损加剧 ;纳米Al2 O3 填充超高分子量聚乙烯复合材料的摩擦系数较超高分子量聚乙烯的略有增大 ;纳米Al2 O3 含量的增加有利于超高分子量聚乙烯复合材料抗磨粒磨损性能的提高 ;偶件表面喷涂SiC粒度的大小对超高分子量聚乙烯及其纳米Al2 O3 填充复合材料的磨损影响较大  相似文献   

3.
以纳米Al2O3、纳米TiO2及聚四氟乙烯(PTFE)作为复合填料,利用热压成型方法分别制备了纳米Al2O3-PTFE及纳米TiO2-PTFE填充聚醚醚酮(PEEK)复合材料;采用销-盘式摩擦磨损试验机考察了纳米微粒对复合材料摩擦学性能的影响;采用扫描电子显微镜观察分析了复合材料磨损表面形貌.结果表明:纳米微粒和PTFE作为复合填料可以显著改善PEEK的摩擦学性能,其改善效果同纳米微粒的填充量相关;当纳米填料的质量分数相同时,PEEK/PTFE/nano-TiO02复合材料的摩擦磨损性能明显优于PEEK/PTFE/nano-Al2O3复合材料;含纳米Al2O3的复合材料磨损表面呈现严重塑性变形特征,且塑性变形程度随纳米微粒含量增加而增大,而含纳米TiO2的复合材料磨损表面塑性变形轻微.  相似文献   

4.
纳米Al2O3填充环氧树脂复合材料的摩擦学性能   总被引:8,自引:5,他引:8  
研究了干摩擦条件下纳米Al2O3微粒含量及其表面改性处理对环氧树脂基复合材料滑动摩擦磨损性能的影响.结果表明,经过表面化学接枝处理后,少量的纳米Al2O3(体积分数约0.24%)即可大幅度提高环氧树脂的摩擦磨损性能,起到显著的减摩和耐磨作用.复合材料的热变形稳定性、显微硬度及磨损表面形貌分析结果表明,对纳米Al2O3微粒进行适当的表面处理有利于加强纳米微粒同基体树脂的结合,从而改善复合材料的摩擦学性能.  相似文献   

5.
利用Al-TiO2-B2O3体系热扩散反应合成(XD)法制备了铝基复合材料;采用销-盘摩擦磨损试验机考察了所制备的铝基复合材料在干摩擦条件下同GCr15钢配副时的磨损性能;采用扫描电子显微镜和光学金相显微镜观察分析了复合材料微观组织结构及其磨损表面和剖面形貌,探讨了其磨损机理.结果表明:所制备的铝基复合材料的磨损性能随Al-TiO2-B2O3反应体系中B2O3/TiO2摩尔比的增加而提高;复合材料的磨损质量损失随着滑动速度的增加而增加,当滑动速度为0.9 m/s左右时最大,随后开始减小;磨损质量损失与滑动距离基本呈线性关系.当B2O3/TiO2摩尔比为0.0时,增强相由Al2O3和Al3Ti组成,相应的复合材料的抗磨性能较差,其磨损主要表现为Al3Ti的犁沟切削、亚表层剥落、塑性基体流失导致Al2O3颗粒裸露脱落以及Al3Ti棒断裂导致的磨粒磨损;加入B2O3后,棒状Al3Ti的数量减少,有利于基体晶粒细化,提高复合材料强度和塑性,故抗磨性能提高.当B2O3/TiO2摩尔比为1.0时,复合材料中的Al3Ti基本消失,抗磨性能显著改善,主要磨损机制为粘着磨损和轻微磨粒磨损.  相似文献   

6.
采用丁二烯合成出端异氰酸酯基聚丁二烯液体橡胶,采用端异氰酸酯基聚丁二烯液体橡胶与环氧树脂E51反应制备端异氰酸酯基液体聚丁二烯橡胶-环氧树脂聚合物(ETPB),同时在其中进一步填充5%和10%(质量分数)纳米Al2O3,在45#钢底材上制备出环氧树脂、改性环氧树脂及填充5%和10%纳米Al2O3的聚合物复合涂层,在MRH-3型高速环-块摩擦磨损试验机上评价了4种涂层在干滑动条件下的摩擦磨损性能.结果表明:通过端异氰酸酯基聚丁二烯液体橡胶改性环氧树脂可以提高环氧树脂涂层的力学性能及其抗磨性;填充5%和10%纳米Al2O3可以有效提高ETPB涂层的抗磨损性能;随着载荷和滑动速度的增加,ETPB涂层的磨损率明显增大;纳米Al2O3填充ETPB涂层的磨损率随载荷和滑动速度增加基本不变;4种涂层的摩擦系数随载荷和滑动速度的变化不大;E51环氧树脂基聚合物复合涂层的磨损机理为脆性断裂和剥层磨损.  相似文献   

7.
针对Al-TiO2 体系 ,采用热扩散反应合成方法制备了Al2 O3 /Al和Al3 Ti/Al复合材料 ,考察了复合材料的组织结构特性、磨损性能及磨损机理 .结果表明 ,Al-TiO2 体系的热扩散反应合成产物为Al2 O3 和Al3 Ti,其中Al3 Ti呈棒状 ,相对均匀地分布于Al基体中 ;Al2 O3 为细小颗粒 ,偏聚于Al基体的晶界 .随着反应物中TiO2 /Al摩尔比的提高 ,产物中Al2 O3 和Al3 Ti的体积含量增加 ,复合材料的耐磨性明显提高 .复合材料的磨损失效主要源于其在反应过程中产生的微空隙 (裂纹核 )在摩擦载荷反复作用下的生长、扩展和摩擦表面的疲劳断裂  相似文献   

8.
在MM-200型摩擦磨损试验机上研究了金属氧化物填充聚四氟乙烯在干摩擦和水润滑条件下的摩擦磨损性能.结果表明:在水润滑下各复合材料的摩擦系数都较在干摩擦下的有不同程度地降低,而磨损不同程度地加剧;水润滑下金属氧化物填充使PTFE的摩擦系数增大,填充Al2O3、ZnO及CdO等均使PTFE的磨损率大幅增大,这是因为填料容易吸水,导致填料与基体脱粘,使材料表面的机械强度降低,从而使磨损率大幅增大.  相似文献   

9.
纳米TiO2和SiO2填充尼龙的摩擦磨损行为   总被引:4,自引:2,他引:4  
制备了纳米SiO2和纳米TiO2填充PA1010尼龙复合材料,测定了复合材料的力学性能,并采用MM-200型摩擦磨损试验机考察了尼龙复合材料在干摩擦条件下同45#钢配副时的摩擦磨损行为.结果表明:填充纳米颗粒可以提高尼龙复合材料的力学性能;纳米SiO2和纳米TiO2作为填料可以提高PA1010的耐磨性,降低摩擦系数,其中纳米颗粒的最佳质量分数为10%;纳米颗粒填充尼龙1010复合材料同45#钢配副时主要呈现粘着和疲劳磨损特征.  相似文献   

10.
采用大功率CO2激光器在45#钢基体上制备激光熔覆镍包纳米Al2O3复合涂层,采用金相显微镜观察涂层表面形貌,在销-盘式摩擦磨损试验机上评价复合涂层与45#碳钢配副的摩擦磨损性能.结果表明:经激光熔覆处理制备的镍包纳米Al2O3复合涂层的耐磨性能显著提高,磨损质量损失降低38%,摩擦系数降低40%;复合涂层中纳米Al2O3的配比对其耐磨性影响显著,高配比涂层具有较好的耐磨性,而摩擦系数与Al2O3配比的关系不大.  相似文献   

11.
李长虹 《摩擦学学报》2004,24(6):572-575
采用粉末冶金技术制备了Al2O3/Cu石墨复合材料;采用MM-200型摩擦磨损试验机考察了石墨对Al2O3/Cu基金属陶瓷复合材料摩擦磨损性能和硬度的影响;采用扫描电子显微镜分析了复合材料磨损表面形貌.结果表明:Al2O3/Cu基复合材料的摩擦系数随石墨含量的增加而降低,当石墨含量大于1.0%后,摩擦系数降低明显;当石墨含量低于3%时,Al2O3/Cu基复合材料的磨损体积损失随石墨含量的增加而降低;当石墨含量低于2.0%时,石墨对Al2O3/Cu基复合材料的硬度无明显影响;当石墨含量超过3.0%后,Al2O3/Cu基复合材料的硬度随石墨含量的增加迅速降低;此外,石墨使得Al2O3/Cu基复合材料磨损表面的微裂纹减少、裂纹长度缩短;当石墨含量达到2.5%时,复合材料磨损表面微裂纹消失.这是由于石墨在磨损表面形成固体润滑膜,从而降低摩擦力并减少裂纹源所致.  相似文献   

12.
通过研究填料含量对聚醚醚酮(PEEK)基复合材料密度、比热和导热系数等热学和物性参数影响的规律,提出了三相PEEK基复合材料热学和物理性质的计算模型;以销/盘摩擦副作为研究对象,采用有限元分析法计算模拟了复合材料摩擦销的温度分布,给出了销的三维稳态和瞬态温度场,并讨论了填料含量对摩擦销端面温升的影响规律.结果表明,计算结果与试验结果吻合较好.  相似文献   

13.
纳米Si_3N_4填充聚双马来酰亚胺摩擦磨损性能研究   总被引:7,自引:0,他引:7  
采用浇铸成型法制备纳米 Si3 N4颗粒填充聚双马来酰亚胺复合材料 ,考察了纳米 Si3 N4质量分数分别为 0 .5 %、1.0 %、1.5 %及 2 .0 %的复合材料的摩擦学性能 ,并用扫描电子显微镜对磨损表面形貌和磨屑进行了分析 .结果表明 ,纳米 Si3 N4颗粒对聚双马来酰亚胺的摩擦磨损性能具有明显的改性作用 ,尤其是当纳米 Si3 N4的质量分数为 1.5 %时 ,复合材料的摩擦磨损性能最佳 ,摩擦系数降为 0 .2 5 ,磨损率降低 72 %  相似文献   

14.
分别用偶联剂、稀土以及偶联剂 -稀土混合物处理玻璃纤维表面 ,以改善玻璃纤维与聚四氟乙烯之间的界面结合力 ,考察了玻璃纤维填充聚四氟乙烯复合材料在油润滑下的摩擦学性能 .结果表明 :在油润滑条件下 ,表面处理玻璃纤维填充聚四氟乙烯复合材料的摩擦系数比未经处理玻璃纤维填充聚四氟乙烯复合材料的低 ,耐磨性亦较优 ;而稀土处理玻璃纤维填充聚四氟乙烯复合材料具有最低的摩擦系数及最高的耐磨性和极限 pv值 ;未经处理玻璃纤维填充聚四氟乙烯复合材料的磨损形式主要为粘着转移 ,偶联剂处理玻璃纤维填充聚四氟乙烯复合材料和偶联剂与稀土处理玻璃纤维填充聚四氟乙烯复合材料均以磨粒磨损为主 ,而稀土处理玻璃纤维填充聚四氟乙烯复合材料的磨损机理主要为粘着磨损和轻微磨粒磨损  相似文献   

15.
采用MM-200型摩擦磨损试验机考察了聚四氟乙烯(PTFE)和MoS2填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜和X射线能量色散谱仪分析了PI复合材料及其偶件磨损表面形貌和元素面分布.结果表明,PTFE和MoS2均可降低PI的摩擦系数,其中PI 30%MoS2复合材料的减摩性能最佳,其摩擦系数同纯PI的相比降低了约50%.除PI 10%PTFE 20%MoS2外,其它几种复合材料的抗磨性能均明显优于纯PI,其中PI 20%PTFE 10%MoS2复合材料的抗磨性能最佳,其磨损率比纯PI的低1个数量级.PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,当转移膜厚度适当且分布较均匀时,PI复合材料的减摩抗磨性能良好.  相似文献   

16.
PTFE及UHMWPE改性PA6复合材料的摩擦学性能研究   总被引:1,自引:1,他引:0  
采用熔融共混法制备了聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHMWPE)改性的两种聚酰胺6(PA6)复合材料,研究了改性PA6复合材料的摩擦学性能,通过扫描电子显微镜观察复合材料的磨损表面,并对其磨损机理进行了分析.结果表明:使用单一润滑剂改性,添加量相同时,PTFE比UHMWPE改性的PA6复合材料具有更优的摩擦学性能;使用复合润滑剂改性时,PA6复合材料获得了比使用单一润滑剂改性时更好的摩擦学性能;添加不同种类的固体润滑剂,PA6复合材料的磨损表面呈现不同的形态特征,表现出不同的磨损机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号