首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Limitations on the upgradation of biogas to biomethane in terms of cost effectiveness and technology maturity levels for stationary power generation purpose in rural applications have redirected the research focus towards possibilities for enhancement of biogas fuel quality by blending with superior quality fuels. In this work, the effect of hydrogen enrichment on performance, combustion and emission characteristics of a single-cylinder, four-stroke, water-cooled, biogas fuelled spark-ignition engine operated at the compression ratio of 10:1 and 1500 rpm has been evaluated using experimental and computational (CFD) studies. The percentage share of hydrogen in the inducted biogas fuel mixture was increased from 0 to 30%, and engine characteristics with pure methane fuel was considered as a baseline for comparative analysis. The CFD model is developed in Converge CFD software for a better understanding on combustion phenomenon and is validated with experimental data. In addition, the percentage share of hydrogen enrichment which would serve as a compromise between biogas upgradation cost and engine characteristics is also identified. The results of study indicated an enhancement in combustion characteristics (peak in-cylinder pressure increased; COVIMEP reduced from 9.87% to 1.66%; flame initiation and combustion durations reduced) and emission characteristics (hydrocarbon emissions reduced, and NOx emissions increased but still lower than pure methane) with increase in hydrogen share from 0 to 30% in biogas fuelled SI engine. Flame propagation speed increased and combustion duration reduced with hydrogen supplementation and the same was evident from the results of the CFD model. Performance of the engine increased with increase in hydrogen share up to 20% and further increment in hydrogen share degraded the performance, owing to heat losses and the enhancement in combustion characteristics were relatively small. Overall, it was found that 20% blending of hydrogen in the inducted biogas fuel mixture will be effective in enhancing the engine characteristics of biogas fuelled engines for stationary power generation applications and it holds a good compromise between biogas upgradation cost and engine performance.  相似文献   

2.
Hydrogen-compressed natural gas blend (HCNG) engines can extend the lean burn limit because of the wide flammability range of hydrogen. Lean combustion helps facilitate high efficiency and fundamentally reduces NOx emission. Increasing the compression ratio (CR) of an HCNG engine was reported to improve its thermal efficiency. However, the high risk of knock occurrence and the increase in NOx emission can hinder CR increase.  相似文献   

3.
Butanol could reduce emissions and alleviate the energy crisis as a bio-fuel used on engines, but the production cost problem limits the application of butanol. During the butanol production, ABE (Acetone-Butanol-Ethanol) is a critical intermediate product. Many studies researched the direct application of ABE on engines instead of butanol to solve the production cost problem of butanol. ABE has the defects of large ignition energy and vaporization heat. Hydrogen is a gaseous fuel with small ignition energy and high flame temperature. In this research, ABE port injection combines with hydrogen direct injection, forming a stratified state of the hydrogen-rich mixture around the spark plug. The engine speed is 1500 rpm, and λ is 1. Five αH2 (hydrogen blending fractions: 0, 5%, 10%, 15%, 20%) and five spark timings (5°, 10°, 15°, 20°, 25° CA BTDC) are studied to observe the effects of them on combustion and emissions of the test engine. The results show that hydrogen addition increases the maximum cylinder pressure and maximum heat release rate, increases the maximum cylinder temperature and IMEP, but the exhaust temperature decreases. The flame development period and flame propagation period shorten after adding hydrogen. Hydrogen addition improves HC and CO emissions but increases NOx emissions. Particle emissions decrease distinctly after hydrogen addition. Hydrogen changes the combustion properties of ABE and improves the test engine's power and emissions. The combustion in the cylinder becomes better with the increase of αH2, but a further increase in αH2 beyond 5% brings minor improvements on combustion.  相似文献   

4.
Ammonia (NH3) fuel is a promising hydrogen carrier for engine carbon neutrality. However, the high auto-ignition temperature and low flame velocity of NH3 substantially restrain its application in internal combustion engines (ICE). In previous works, hydrogen and pre-chamber turbulent jet ignition (TJI) have shown the potential abilities to solve critical combustion issues. Therefore, in this work, a concept of reactivity controlled turbulent jet ignition (RCTJI) for ammonia engines is proposed, where a newly designed air-assisted pre-chamber system with scavenging and hydrogen injection is adopted.  相似文献   

5.
This study investigates the potential usage of the methane and hydrogen enriched methane in a turbocharged common-rail direct injection diesel engine. Methane and hydrogen/methane mixtures are sent through the air intake manifold of the engine. The engine is operated at four different loads and three different compression ratios. Results are compared amongst single diesel and dual-fuel operations at different compression ratios and load conditions. Compared to diesel, dual-fuel operations mostly generate higher and advanced peak in-cylinder gas pressure, more combustion noise, late pilot injection and start of combustion, advanced combustion center, substantial variations at ignition delay and combustion duration, a significant increase in cyclic variations at low and medium loads, and earlier heat release. Hydrogen enrichment decreases evidently specific fuel consumption. Concerning emissions, compared to diesel operation, dual-fuel operations produce higher total hydrocarbon (THC) and nitrogen oxides (NOx) but lower carbon dioxide (CO2). Hydrogen substitutions decrease THC and CO2 emissions of methane dual-fuel operations approximately between 9-29% and 1–32%, respectively. Smoke emission of dual-fuel operations is less than that of diesel at low and medium loads, whereas it sharply increases at high load. Knocking occurs at high compression ratio and load conditions with dual-fuel operations and dramatically increases with increasing hydrogen ratio. Decreasing the compression ratio notably reduces the combustion noise as well as some emissions, such as NOx, CO2 and smoke, for entire load ranges of dual-fuel and diesel operations.  相似文献   

6.
In the future, hydrogen will be required to supplement and eventually replace a rapidly diminishing natural gas resource for stationary type combustion engines. Combustion properties, knock rating, engine performance and emissions of methane (the chief constituent of natural gas) and hydrogen are different as engine fuels. In the present work, investigations were carried out to obtain data on engine performance, fuel economy and emissions, using natural gas, hydrogen-supplemented natural gas (methane) and hydrogen in AVL2 research engine. Investigations were also carried out to suppress flashback and to reduce nitric oxide emissions at different operating conditions, by water induction into the hydrogen-air mixture in the intake manifold for a hydrogen fueled engine.  相似文献   

7.
The influence of changes in the swirl velocity of the intake mixture on the combustion processes within a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen were investigated analytically. A turbulent transient 3D predictive computational model which was developed and applied to the HCCI engine combustion system, incorporated detailed chemical kinetics for the oxidation of hydrogen. The effects of changes in the initial intake swirl, temperature and pressure, engine speed and compression and equivalence ratios on the combustion characteristics of a hydrogen fuelled HCCI engine were also examined. It is shown that an increase in the initial flow swirl ratio or speed lengthens the delay period for autoignition and extends the combustion period while reducing NOx emissions. There are optimum values of the initial swirl ratio and engine speed for a certain mixture intake temperature, pressure, compression and equivalence ratios operational conditions that can achieve high thermal efficiencies and low NOx emissions while reducing the tendency to knock  相似文献   

8.
The main challenge on the fueling of pure hydrogen in the automotive vehicles is the limitation in the hydrogen separation from the product of steam reforming and gasification plants and the storage issues. On the other hand, hydrogen fueling in automotive engines has resulted in uncontrolled combustion. These are some of the factors which motivated for the fueling of raw syngas instead of further chemical or physical processes. However, fueling of syngas alone in the combustion chamber has resulted in decreased power output and increased in brake specific fuel consumption. Methane augmented hydrogen rich syngas was investigated experimentally to observe the behavior of the combustion with the variation of the fuel-air mixture and engine speed of a direct-injection spark-ignition (DI SI) engine. The molar ratio of the high hydrogen syngas is 50% H2 and 50% CO composition. The amount of methane used for augmentation was 20% (V/V). The compression ratio of 14:1 gas engine operating at full throttle position (the throttle is fully opened) with the start of the injection selected to simulate the partial DI (180° before top dead center (BTDC)). The relative air-fuel ratio (λ) was set at lean mixture condition and the engine speed ranging from 1500 to 2400 revolutions per minute (rpm) with an interval of 300 rpm. The result indicated that coefficient of variation of the indicate mean effective pressure (COV of IMEP) was observed to increase with an increase with λ in all speeds. The durations of the flame development and rapid burning stages of the combustion has increased with an increase in λ. Besides, all the combustion durations are shown to be more sensitive to λ at the lowest speed as compared to the two engine speeds.  相似文献   

9.
In recent years, hybrid and fully electric vehicles have received significant consideration since they represent an alternative sustainable transport to the conventional fossil-fuel powered vehicles. However, a worldwide implementation of this alternative propulsion can induce large and undesirable peak demands in distributed power systems. In this context, natural gas spark ignition engines are a promising form of technology to supply part of the energy demand. The main limitations related to low laminar flame propagation speed and poor lean-burn capabilities of natural gas can be overcome by using hydrogen as additional fuel. In this paper, a comparison was carried out between methane and different CH4/H2 mixtures. Specifically, low levels of hydrogen addition were used (5%, 10%, 20% volumetric basis) in stoichiometric and lean burn conditions. The measurements were carried out in an optically accessible single-cylinder port fuel injection spark ignition engine. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging with two different combustion chamber views were used. Macroscopic (global) and microscopic (local) post-processing tools were implemented to provide a detailed analysis of the flame front propagation process. Moreover, an in-depth analysis was performed to study the flame penetration in the piston top-land crevice. Exhaust gas emissions were also characterized and linked with thermodynamic and optical data. In order to evaluate the combustion process in similar fluid-dynamic conditions, all measurements were performed under steady-state conditions at fixed engine speed, load and spark advance. All the results highlight fast combustion promotion due to the hydrogen addition. In addition, hydrogen reduces the preferential propagation of the flame in a certain direction and increases the flame front wrinkling. Flame propagation in the top-land crevice region was measured for methane and its blends with hydrogen, which represents an original contribution to the literature. An inverse trend was seen between flame penetration in the crevice and unburned hydrocarbon emissions. Lastly, tests in lean conditions demonstrate the potential to decrease nitrogen oxides emissions when methane and methane-hydrogen blends are used.  相似文献   

10.
Hydrogen is a promising future energy carrier due to its potential for production from renewable resources. It can be used in existing compression ignition diesel engines in a dual-fuel mode with little modification. Hydrogen's unique physiochemical properties, such as higher calorific value, flame speed, and diffusivity in air, can effectively improve the performance and combustion characteristics of diesel engines. As a carbon-free fuel, hydrogen can also mitigate harmful emissions from diesel engines, including carbon monoxide, unburned hydrocarbons, particulate matter, soot, and smoke. However, hydrogen-fueled diesel engines suffer from knocking combustion and higher nitrogen oxide emissions. This paper comprehensively reviews the effects of hydrogen or hydrogen-containing gaseous fuels (i.e., syngas and hydroxy gas) on the behavior of dual-fuel diesel engines. The opportunities and limitations of using hydrogen in diesel engines are discussed thoroughly. It is not possible for hydrogen to improve all the performance indicators and exhaust emissions of diesel engines simultaneously. However, reformulating pilot fuel by additives, blending hydrogen with other gaseous fuels, adjusting engine parameters, optimizing operating conditions, modifying engine structure, using hydroxy gas, and employing exhaust gas catalysts could pave the way for realizing safe, efficient, and economical hydrogen-fueled diesel engines. Future work should focus on preventing knocking combustion and nitrogen oxide emissions in hydrogen-fueled diesel engines by adjusting the hydrogen inclusion rate in real time.  相似文献   

11.
Lean combustion has the potential to achieve higher thermal efficiency for internal combustion (IC) engines. However, natural gas engines often suffer from slow burning rate and large cyclic variations when adopting lean combustion. In this study, using a dual-fuel optical engine with a high compression ratio, the effects of direct-injected hydrogen on lean combustion characteristics of natural gas engines was investigated, emphasizing the role of hydrogen injection timing. Synchronization measurement of in-cylinder pressure and high-speed photography was performed for combustion analysis. The results show that the direct-injected hydrogen exhibits great improvement in lean combustion instability and power capability of natural gas engines. Visual images and combustion phasing analysis indicate that the underlying reasons are ascribed to the fast flame propagation with hydrogen addition. Regarding the direct injection timings, it is found that late injection of direct-injected hydrogen can achieve higher thermal efficiency, manifesting advanced combustion phasing, and increased heat release rate. Specifically, the flame propagation speed is elevated by approximately 50% at ?100 CAD than that of ?250 CAD. Further analysis indicates that the improvement of engine performance is ascribed to the increased volumetric efficiency and in-cylinder turbulence intensity, manifesting distinct flame centroid pathways at different injection timings. The current study provides insights into the combustion optimization of natural gas engines under lean burning conditions.  相似文献   

12.
In traffic transportation, the use of low-carbon fuels is the key to being carbon-neutral. Hydrogen-enhanced natural gas gets more and more attention, but practical engines fueled with it often suffer from low engine power output. In this study, the inner mechanism of hydrogen direct injection on methane combustion was optically studied based on a dual-fuel supply system. Simultaneous pressure acquisition and high-speed direct photography were used to analyze engine performance and flame characteristics. The results show that lean combustion can improve methane engine's thermal efficiency, but is limited by cyclic variations under high excess air coefficient conditions. Hydrogen addition mainly acts as an ignition promoter for methane lean combustion, as a result, the lean combustion limit and thermal efficiency can be improved. As for hydrogen injection timing, late injection can increase the in-cylinder turbulence intensity but also the inhomogeneity, so a suitable injection timing is needed for improving the engine's performance. Besides, late hydrogen injection is more effective under lean conditions because of the reduced mixture inhomogeneity. The current study shall give some insights into the controlling strategies for natural gas/hydrogen engines.  相似文献   

13.
Owing to its brilliant combustion performance and cleanest combustion products, hydrogen has been widely considered as one best alternative fuel for internal combustion engines. However, in the cylinder of hydrogen internal combustion engines, high combustion temperature and oxygen enrichment make NOx is still one but the only combustion pollutant. Therefore, it is particularly important to control NOx emission for hydrogen fuelled engines. Since PFI-H2ICE (port-fuel-injection hydrogen internal combustion engine) is the normal type of hydrogen fuelled engines, the present article will focus on the studies about NOx emission in PFI-H2ICE researches. First, the present article reviews the mechanism of NOx generation in PFI-H2ICE; upon chemical kinetics, the generation of NOx will be summarized and discussed into three major paths which including thermal NO path, NNH–NO path and N2O–NO path. Then, the researches on the control methods of NOx for PFI-H2ICE in recent years will be systematically reviewed, the influencing factors to reduce NOx emission will be summarized in some aspects which including combustion component control strategy, injection control strategy, ignition control strategy and engine compression ratio control strategy. To the PFI-H2ICE operated at lean fuel conditions (like equivalence ratio is less than 0.5) or rich fuel conditions (like equivalence ratio is higher than 1), the technologies and the strategies of EGR (exhaust gas re-circulation) will be reviewed and discussed. It is hoped this literature review would enable researchers to systematically understand the progress of NOx emissions research in PFI-H2ICE and explore further research directions.  相似文献   

14.
本文基于一台压缩比可变的单缸热力学发动机,使用自主开发的空气辅助喷射系统,在全负荷条件下,开展了活塞式航空煤油发动机性能优化及爆震抑制的试验研究。探究了采用双点火、降低压缩比以及使用CO2辅助喷射对航空煤油发动机的性能及爆震抑制的影响研究。结果表明,采用双点火可以有效提高航空煤油火焰传播速率,提高燃烧相位,降低循环波动,并且有抑制爆震的作用;通过降低压缩比有效实现了爆震抑制,解决在较高压缩比下航空煤油发动机只能运行在小负荷区间的难题,压缩比降至6,发动机实现全负荷运行,动力性、经济性较好,且不易发生爆震;采用CO2辅助航空煤油喷射时,随着CO2脉宽的增加,同一点火时刻下,发动机的动力性经济性下降,但由于CO2的抑制爆震的作用,MBT点火时刻最大可提前至14 °CA BTDC,使得燃烧相位提前,发动机燃烧效率提高。  相似文献   

15.
In this paper, some models of comparative combustion characteristics for gasoline and hydrogen fuelled spark ignition internal combustion engines were developed and discussed from a thermodynamic and heat transfer perspective. The geometry used was that of a 3.4L GM V6 engine with a compression ratio of 9.5:1. Models for mass fraction burned, pressure, temperature, and gas speed were developed according to the literature survey and graphed over the cycle range. Furthermore, Pressure–Volume and Temperature–Entropy models were developed for both gasoline and hydrogen fuelled engines. Analysis of these models indicated approximately a 6.42% increase thermal efficiency for the hydrogen fuelled engine due to less exhaust blow down, less heat rejection during the exhaust stroke, and its shorter combustion duration closer to TDC. However, it was found that the hydrogen fuelled engine had approximately a 35.0% decrease in power output at an equivalence ratio of 1.0 due to the decrease in MEP and a greater amount of heat transfer to the cooling system due to the increased combustion temperatures, shorter quenching distance associated with H2 combustion and greater flame speed. Finally, an increase in cycle temperatures and pressures was observed from increasing the equivalence ratio from 0.4 to 1.0 to 1.2.  相似文献   

16.
To understand the combustion performance of using hydrogen/methane blended fuels for a micro gas turbine that was originally designed as a natural gas fueled engine, the combustion characteristics of a can combustor has been modeled and the effects of hydrogen addition were investigated. The simulations were performed with three-dimensional compressible k-ε turbulent flow model and presumed probability density function for chemical reaction. The combustion and emission characteristics with a variable volumetric fraction of hydrogen from 0% to 90% were studied. As hydrogen is substituted for methane at a fixed fuel injection velocity, the flame temperatures become higher, but lower fuel flow rate and heat input at higher hydrogen substitution percentages cause a power shortage. To apply the blended fuels at a constant fuel flow rate, the flame temperatures are increased with increasing hydrogen percentages. This will benefit the performance of gas turbine, but the cooling and the NOx emissions are the primary concerns. While fixing a certain heat input to the engine with blended fuels, wider but shorter flames at higher hydrogen percentages are found, but the substantial increase of CO emission indicates a decrease in combustion efficiency. Further modifications including fuel injection and cooling strategies are needed for the micro gas turbine engine with hydrogen/methane blended fuel as an alternative.  相似文献   

17.
Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines. Hydrogen’s wide flammability range allows higher engine efficiency with much leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. This paper presents results from an optical study of combustion in a spark-ignition research engine running with direct injection and port injection of hydrogen. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles in order to calculate in-cylinder rates of flame growth. Laser induced fluorescence of OH was also applied on an in-cylinder plane below the spark plug to record detailed features of the flame front for a series of engine cycles. The tests were performed at various air-to-fuel ratios, typically in a range of φ = 0.50–0.83 at 1000 RPM with 0.5 bar intake pressure. The engine was also run with gasoline in direct-injection and port-injection modes to compare with the operation on hydrogen. The observed combustion characteristics were analysed with respect to laminar and turbulent burning velocities, as well as flame stretch. An attempt was also made to review relevant hydrogen work from the limited literature on the subject and make comparisons were appropriate.  相似文献   

18.
结合燃烧模型,湍流火焰传播模型以及化学动力学模型,建立了摩托车四冲程汽油机双区准维燃烧模型。运用该模型模拟燃烧过程,并进行爆燃预测。用此模型CUB100摩托车汽油机进行了计算,预测了CUB100提高压缩比后爆燃的发生。  相似文献   

19.
Varying proportions of hydrogen and carbon monoxide (synthesis gas) have been investigated as a spark ignition (SI) engine fuel in this paper. It is important to understand how various synthesis gas compositions effect important SI combustion fundamentals, such as knock and burn duration, because in synthesis gas production applications, the compositions can vary significantly depending on the feedstock and production method.A single cylinder cooperative fuels research (CFR) engine was used to investigate the knock and combustion characteristics of three blends of synthesis gas (H2/CO ratio); 1) 100/0, 2) 75/25, and 3) 50/50, by volume. These blends were tested at three compression ratios (6:1, 8:1, and 10:1), and three equivalence ratios (0.6, 0.7, and 0.8).It was revealed that the knock limited compression ratio (KLCR) of a H2/CO mixture increases with increasing CO fraction, for a given spark timing. For a given equivalence ratio and spark timing, a 50%/50% H2/CO mixture produced a KLCR of 8:1 compared to a 100% H2 condition, which produced a KLCR of 6:1. The burn duration and ignition lag is also increased with increasing CO fraction. The results from this work are important for those considering using synthesis gas as a fuel in SI engines. It reveals that although CO is a slow burning fuel, higher CO fractions in synthesis gas can be beneficial, because of its increased resistance to knock, which gives it the potential of producing higher indicated efficiencies through the utilization of an engine with a higher compression ratio.  相似文献   

20.
Evolving technology and a reoccurring energy crisis creates a continued investigation into the search for sustainable and clean-burning renewable fuels. One possibility is hydrogen that has many desirable qualities such as a low flammability limit promoting ultra-lean combustion, high laminar flame speed for increased thermal efficiency and low emissions. However, past research discovered certain limiting factors in its use such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, this work documents manifold injection of a hydrogen/carbon monoxide mixture in a dual-fuel methodology with biodiesel. While carbon monoxide does degrade some of the desirable properties of hydrogen, it acts partially like a diluent to restrict pre-ignition. The result of this mixture addition allows the engine to maintain power while reducing biodiesel fuel consumption with a minimal NOx emissions increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号