首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt formations of an appropriate thickness and structure, common over the globe, are potential sites for leaching underground caverns in them for storage of various substances, including hydrogen. Underground hydrogen storage, considered as underground energy storage, requires, in first order, an assessment of the potential for underground storage of this gas at various scales: region, country, specific place.The article presents the results of the assessment of the underground hydrogen storage potential for a sample bedded salt formation in SW Poland. Geological structural and thickness maps provided the basis for the development of hydrogen storage capacity maps and maps of energy value and heating value. A detailed assessment of the hydrogen storage capacity was presented for the selected area, for a single cavern and for the cavern field; a map of the energy value of stored hydrogen has also been presented. The hydrogen storage potential of the salt caverns was related to the demand for electricity and heat. The results show the huge potential for hydrogen storage in salt caverns.  相似文献   

2.
The replacement of coal-fired power plants with increasing proportions of renewable and nuclear energies in the province of Ontario highlights the need to balance seasonal energy demands. This can be achieved through power-to-gas technology, where excess energy is used to generate hydrogen gas through electrolysis, and the generation is coupled with underground hydrogen storage. This article presents a preliminary assessment regarding the potential for underground hydrogen storage in geological formations including salt and hard rock caverns, depleted oil and gas fields, and saline aquifers in Ontario, highlighting potential locations where future storage could be feasible. Southern Ontario presents many potential storage options, including Silurian bedded salts, depleted Ordovician natural gas reservoirs, saline aquifers in Cambrian sandstone and hard rock caverns in argillaceous limestones. Hard rock caverns in Precambrian crystalline rocks of the Canadian Shield are also discussed, in addition to the potential for the use of lined rock caverns. This work aims to provide a basis for further research regarding the appropriate location of underground hydrogen gas storage facilities in Ontario.  相似文献   

3.
Future increased use of hydrogen is connected with development of bulk storage facilities. Such facilities may be arranged underground utilizing similar technique as for compressed air and natural gas storage. A conceptual design of a large hydrogen storage in excavated, tunnel-shaped caverns is discussed in this paper. Special attention is paid to methods of preventing gas escape through rock fractures. In addition to construction principles, time requirements and economics of the hydrogen storage installation are analysed in the paper.  相似文献   

4.
Concentrating solar power (CSP) plants require thermal energy storage (TES) systems to produce electricity during the night and periods of cloud cover. The high energy density of high-temperature metal hydrides (HTMHs) compared to state-of-the-art two-tank molten salt systems has recently promoted their investigation as TES systems. A common challenge associated with high-temperature metal hydride thermal energy storage systems (HTMH TES systems) is storing the hydrogen gas until it is required by the HTMH to generate heat. Low-temperature metal hydrides can be used to store the hydrogen but can comprise a significant proportion of the overall system cost and they also require thermal management, which increases the engineering complexity. In this work, the potential of using a hydrogen compressor and large-scale underground hydrogen gas storage using either salt caverns or lined rock caverns has been assessed for a number of magnesium- and sodium-based hydrides: MgH2, Mg2FeH6, NaMgH3, NaMgH2F and NaH. Previous work has assumed that the sensible heat of the hydrogen released from the HTMH would be stored in a small, inexpensive regenerative material system. However, we show that storing the sensible heat of the hydrogen released would add between US$3.6 and US$7.5/kWhth to the total system cost for HTMHs operating at 565 °C. If the sensible heat of released hydrogen is instead exploited to perform work then there is a flow-on cost reduction for each component of the system. The HTMHs combined with underground hydrogen storage all have specific installed costs that range between US$13.7 and US$26.7/kWhth which is less than that for current state-of-the-art molten salt heat storage. Systems based on the HTMHs Mg2FeH6 or NaH have the most near term and long term potential to meet SunShot cost targets for CSP thermal energy storage. Increasing the operating temperature and hydrogen equilibrium pressure of the HTMH is the most effective means to reduce costs further.  相似文献   

5.
Salt bearing formations have world-wide distribution. The geological structures of Permian salt bearing deposits in Poland are similar to those in the other parts of the Central European salt basin, to which they belong as its SE part. There is a notable trend to use salt domes as sites for underground storage of various gases, fuels and other substances, including hydrogen. Possibilities of using salt domes in Poland for underground hydrogen storage are presented with the focus on the option of using the underground space for energy storage. Usefulness of the 27 hitherto studied salt domes in the Polish Lowlands for underground hydrogen storage in caverns is evaluated using analytical methods of the geology of mineral deposits.Seven not yet developed salt domes are selected as the most promising ones, taking into account geological and reservoir criteria: Rogó?no, Damas?awek, Lubień, ?ani?ta, Goleniów, Izbica Kujawska and D?bina. Initial experience in underground hydrogen storage in salt caverns is presented. Geological conditions favourable for hydrogen storage in underground caverns leached in salt domes are outlined. Their advantage relative to underground storage sites in porous rocks (depleted hydrocarbon deposits and deep aquifers) is discussed.  相似文献   

6.
The role of hydrogen in a future energy system with a high share of variable renewable energy sources (VRES) is regarded as crucial in order to balance fluctuations in electricity generation. These fluctuations can be compensated for by flexibility measures such as the expansion of transmission, flexible generation, larger back-up capacity and storage. Salt cavern storage is the most promising technology due to its large storage capacity, followed by pumped hydro storage. For the underground storage of chemical energy carriers such as hydrogen, salt caverns offer the most promising option owing to their low investment cost, high sealing potential and low cushion gas requirement. This paper provides a suitability assessment of European subsurface salt structures in terms of size, land eligibility and storage capacity. Two distinct cavern volumes of 500,000 m3 and 750,000 m3 are considered, with preference being given for salt caverns over bedded salt deposits and salt domes. The storage capacities of individual caverns are estimated on the basis of thermodynamic considerations based on site-specific data. The results are analyzed using three different scenarios: onshore and offshore salt caverns, only onshore salt caverns and only onshore caverns within 50 km of the shore. The overall technical storage potential across Europe is estimated at 84.8 PWhH2, 27% of which constitutes only onshore locations. Furthermore, this capacity decreases to 7.3 PWhH2 with a limitation of 50 km distance from shore. In all cases, Germany has the highest technical storage potential, with a value of 9.4 PWhH2, located onshore only in salt domes in the north of the country. Moreover, Norway has 7.5 PWhH2 of storage potential for offshore caverns, which are all located in the subsurface of the North Sea Basin.  相似文献   

7.
To evaluate the impacts and capabilities of large-scale compressed gas energy storage for mitigating wind intermittency, dynamic system models for compressed air energy storage and compressed hydrogen energy storage inside salt caverns have been developed. With the experimental data from air storage in a salt cavern in Huntorf, Germany, the cavern model has been verified. Both daily and seasonal simulation results suggest that with the same size wind farm and salt cavern, a compressed hydrogen energy storage system could better complement the wind intermittency and could also achieve load shifting on a daily and seasonal time scale. Moreover, the hydrogen produced in the compressed hydrogen energy storage system could also be dispatched as a fuel to accommodate zero emission transportation for up to 14,000 fuel cell vehicles per day while achieving seasonal load shifting.  相似文献   

8.
With the expected increase in the use of hydrogen as an energy carrier, large-scale underground storage sites will be needed. Unlike underground natural gas storage (UGS), many aspects on the performance of underground hydrogen storage (UHS) are not well understood, as there is currently no UHS in use for energy supply. Here we present the results of a detailed comparative performance study of UGS and UHS, based on an inflow/outflow nodal analysis. Three UGS sites in depleted gas fields and one in a salt cavern cluster in the Netherlands are used as case studies. The results show that although hydrogen can be withdrawn/injected at higher rates than natural gas, this can be limited by technical constraints. It also indicates that wider ranges of working pressures are required to increase the storage capacity and flow performance of an UHS site to compensate for the lower energy density of hydrogen.  相似文献   

9.
The analysis of geological and reservoir conditions of the underground storage of hydrogen, methane, and carbon dioxide, that are important when choosing rock formations for the storage of gas, was presented. Physico-chemical properties of the discussed gases, affecting underground storage, were taken into account. Aquifers, hydrocarbon reservoirs, and caverns leached in salt rocks were analyzed. Legal aspects of underground gas storage were indicated.The physico-chemical conditions of the gases considered (especially molecular mass, and dynamic viscosity) are important for the selection of geological structures for their storage. The reservoir tightness is one of the most important geological and reservoir conditions when taking the appropriate porosity and permeability of rocks building underground storage sites into account. Salt caverns should be mainly used for hydrogen storage due to the tightness of rock salt. Geochemical and microbiological interactions affecting the operation of the underground storage site and its tightness are especially important and should be taken into account. The size of the underground storage site, while not as crucial in the case of H2 storage, is important for CO2 storage. When it comes to reservoir conditions, the amount of cushion gas and storage efficiency are important. The legal status of gas storage sites is highly variable. While there are existing regulations regarding natural gas storage, CO2 storage requires further legislation. In the case of H2 storage legal regulations need to be developed based on the experience of storage of other gases. The potential competition from other entities focused on the use of underground space for gas storage should be taken into account.  相似文献   

10.
Over the last decade, there has been a growing interest in large-scale use of hydrogen in the transportation and renewable energy sectors. Relatively cost-effective storage options at scale are essential to realize the full potential of hydrogen as an energy carrier. Underground geologic storage of hydrogen could offer substantial storage cost reductions as well as buffer capacity to meet possible disruptions in supply or changing seasonal demands. Several geologic storage site options are being considered including salt caverns, depleted oil and/or gas reservoirs, aquifers, and hard rock caverns. This paper describes an economic analysis that addresses the costs entailed in developing and operating a geologic storage facility. The analysis focuses on salt caverns to illustrate potential city demand for hydrogen using geostorage options because (1) salt caverns are known to successfully contain hydrogen, and (2) there is more geotechnical certainty involved with salt storage as compared to the other three storage options. The main findings illustrate that geologic limitations rather than city demand cause a larger disparity between costs from one city to the next. For example Detroit hydrogen storage within salt caverns will cost approximately three times more than Los Angeles with its larger population. Detroit is located near thinly bedded salt formations, whereas Los Angeles has access to more massive salt formations. Los Angeles requires the development of larger and fewer caverns and therefore has lower costs.  相似文献   

11.
Romania is a country with relatively good opportunities to manage the transition from the dependence on fossil energy to an energy industry based on renewable energy sources (RES), supported by hydrogen as an energy carrier. In order to ensure Romania's energy security in the next decades, it will be necessary to consider a fresh approach incorporating a global long-term perspective based on the latest trends in energy systems. The present article focuses on an analysis of the potential use of salt caverns for hydrogen underground storage in Romania. Romanian industry has a long technical and geological tradition in salt exploitation and therefore is believed to have the potential to use the salt structures also in the future for gas and specifically hydrogen underground storage. This paper indicates that more analysis works needs to be undertaken in order to value this potential, based on which macroeconomic decisions then can be taken. The present work examines the structures of today's energy system in Romania and features an analysis of Romania's current potential of hydrogen underground storage as well as, reports on the potential use of this hydrogen in chemical industry, the transport sector and salt industry in Romania and highlighting issues implied by a possible introduction and use of hydrogen and fuel cell technologies.  相似文献   

12.
The paper discusses the suitability of bedded salt deposits for underground hydrogen storage facilities. The presented research is an example of multi-criteria decision analysis coupled with spatial data analysis undertaken using GIS (Geographic Information System). The aim of this study is to develop a methodology for selecting the best locations for hydrogen storage in salt caverns. In the analysis, we take into account the results of previous studies of the storage capacity of rock salt deposits. The presented methodology allows the creation of rock salt deposit suitability maps for underground hydrogen storage. The results show that the applied method significantly influences the resulting map image, helping to identify optimal locations for hydrogen storage facilities. The presented approach may be of value to governmental institutions considering underground hydrogen storage, geological services, power plants producing electricity from renewable energy sources, and chemical and petrochemical plants.  相似文献   

13.
The Plan-DelyKaD project focused on an in-depth comparison of relevant electrolysis technologies, identified criteria for and selected most relevant salt cavern sites in Germany, studied business case potentials for applying hydrogen taken from storage to different end-users and engaged in identifying the future role of hydrogen from large scale storage in the German energy system. The focus of this paper is on the latter three topics above. The bottom-up investigation of most suitable salt cavern sites was used as input for a model-based analysis of microeconomic and macroeconomic aspects. The results identify dimensions and locations of possible hydrogen storages mostly in Northern Germany with ample potential to support the integration of fluctuating renewable electricity into the German power system. The microeconomic analysis demonstrates that the most promising early business case for hydrogen energy from large scale storage is its application as a fuel for the mobility sector. From a system perspective the analysis reveals that an optimized implementation of hydrogen generation via electrolysis and storage in salt caverns will have a positive impact on the power system in terms of reduced curtailments of wind power plants and lower residual peak loads.  相似文献   

14.
Increased emissions of greenhouse gasses into the atmosphere has adversely been contributing to global warming as a result of burning fossil fuels. Therefore, the energy sectors have been looking into renewable sources such as wind, solar, and hydro energy to make electricity. However, the strongly fluctuating nature of electricity from such energy sources requires a bulk energy storage system to store the excess energy as a buffer and to fulfill the demand constantly. Underground storage is a proven way to store a huge amount of energy (electricity) after converting it into hydrogen as it has higher energy content per unit mass than other gases such as methane and natural gas. This paper reviews the technical aspects and feasibility of the underground storage of hydrogen into depleted hydrocarbon reservoirs, aquifers, and manmade underground cavity (caverns). Mechanisms of underground hydrogen storage (UHS) followed by numerous phenomena such as hydrodynamics, geochemical, physiochemical, bio-chemical, or microbial reactions have been deliberated. Modeling studies have also been incorporated in the literature to assess the feasibility of the process that are also reviewed in this paper. Worldwide ongoing lab study, field study together with potential storage sites have been reported as well. Technical challenges along with proper remedial techniques and economic viability have been briefly discussed. Finally, this paper delivers some feasible strategies for the underground hydrogen storage process, which would be helpful for future research and development of UHS.  相似文献   

15.
Hydrogen is regarded as one of the most important energy sources for the future. Safe, large-scale storage of hydrogen contributes to the commercial development of the hydrogen industry. Use of bedded salt caverns for natural gas storage in China provides a new option for underground hydrogen storage (UHS). In this study, the physical properties of multicomponent gases in UHS and salt rock are reviewed and discussed, along with the flow of hydrogen in the surrounding salt rock. Mathematical models of the two-phase multicomponent flow of the gas–brine system in the UHS were established. A numerical model of a simplified elliptical salt cavern was built to simulate the migration of the gas–brine system in the UHS. The hydrogen tightness of the UHS was evaluated through simulation with different storage strategies, salt rock and interlayer permeabilities, and gas components. The results indicate that: (1) Cyclic injection and withdrawal facilitate hydrogen leakage, which is accelerated by increasing the frequency. (2) The huff-n-puff of hydrogen gas in the injection and withdrawal cycles forces the gas into pore space and enhances the relative permeability of the gas phase. The migration of hydrogen and brine weakens the hydrogen tightness. Brine saturation is an important index for evaluating the hydrogen tightness of UHS. (3) The leakage rate of UHS increases with an increase in the permeability of the salt rock and interlayer and the total thickness of the interlayers. The average permeability Kwa weighted by the thickness of layers for the bedded salt formation is proposed to integrate three variables to facilitate field application of the simulation results. The critical Kwa is less than 3.02 × 10−17 m2 if the recommended annual hydrogen leakage rate is less than 1%. (4) The difference between hydrogen and other gas species is another important factor in the leakage rate and should be considered. This study provides theoretical guidance for evaluating the feasibility of UHS in salt caverns and site selection in China.  相似文献   

16.
The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale, the approach is not applicable in all regions due to varying geological conditions. Therefore, other storage methods are necessary. In this article, options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies, such as liquid hydrogen, methanol, ammonia, and dibenzyltoluene, is found to be advantageous in terms of storage density, cost of storage, and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting, these variable costs may be tolerable.  相似文献   

17.
Hydrogen has attracted attention worldwide with its favourable inherent properties to contribute towards a carbon-free green energy future. Australia aims to make hydrogen as its next major export component to economize the growing global demand for hydrogen. Cost-effective and safe large-scale hydrogen storage in subsurface geology can assist Australia in meeting the projected domestic and export targets. This article discusses the available subsurface storage options in detail by first presenting the projected demand for hydrogen storage. Australia has many subsurface formations, such as depleted gas fields, salt caverns, aquifers, coal seams and abandoned underground mines, which can contribute to underground hydrogen storage. The article presents basin-wide geological information on the storage structures, the technical challenges, and the factors to consider during site selection. With the experience and knowledge Australia has in utilizing depleted reservoirs for gas storage and carbon capture and sequestration, Australia can benefit from the depleted gas reservoirs in developing hydrogen energy infrastructure. The lack of experience and knowledge associated with other geostructures favours the utilization of underground gas storage sites for the storage of hydrogen during the initial stages of the shift towards hydrogen energy. The article also provides future directions to address the identified important knowledge gaps to utilize the subsurface geology for hydrogen storage successfully.  相似文献   

18.
Electricity production in the majority of Canada's regions is characterized by high proportions of nuclear and renewable sources such as hydroelectricity. Future plans to phase out coal-fired power plants by 2030 and decrease fossil fuel use in favor of increased integration of renewables highlight the need to develop strategies which can match intermittent and base-load electricity output with market demand. The use of hydrogen gas generated through off-peak electrolysis has been highlighted by the Canadian government as a potential avenue forward in managing electrical grids with surplus and intermittent electricity generation. This technology can be supported in a safe and cost-effective manner by underground hydrogen storage in geological formations. In this article, an overview of Canadian geology, as well as an assessment of the potential application of underground storage methods and associated safety concerns in Canada is presented. Favorable locations for pilot projects are found in the sedimentary basins of western and Atlantic Canada as well as southern Ontario, or the crystalline rocks of the Canadian Shield.  相似文献   

19.
France's response to the climate crisis includes an ambitious policy to make hydrogen a major component of the energy mix. One of the challenges that must be overcome to achieve this goal is to find a practicable and socially acceptable way of storing hydrogen. The present study investigated potential resistance to hydrogen use in France by examining social representations of hydrogen and its underground storage in salt caverns. To this end, we investigate how distance from the object (knowledge, experience, involvement) affects dimensions that contribute to people's perceptions of, and therefore the social acceptability of, hydrogen as a renewable energy. Results provide valuable insights into French people's perceptions of hydrogen and its underground storage in salt caverns. They also highlight the individual processes, and their intertwining within the social context, that help to shape public opposition to projects aimed at accomplishing the widely accepted need to switch to renewable energies.  相似文献   

20.
Hydrogen is becoming an alternative for conventional energy sources due to absence of any Greenhouse Gases (GHG) emissions during its usage. Geological storage of hydrogen will be potential solution for dealing with large volume requirement to manage uninterrupted Hydrogen supply-chain. Geological Storages such as depleted reservoirs, aquifers and salt caverns offer great potential option for underground hydrogen storage (UHS). There are several depleted gas fields in India. One of such field is located in Tapti-Daman formation. A comprehensive study is conducted to assess the possibility of hydrogen storage in this Indian field which is first of its kind. The geological characteristic of this site is assessed for its viability for storage. Additionally, several aspects including storage capacity, sealability, chemical and micro-biological stability, reservoir simulation, and production viability are assessed using various analytical and numerical models.The qualitative analysis of the Tapti-gas field suggests that the integrity of the storage site will be intact due to existing anticlinal four-way closed structure. The chemical and micro-biological losses are minimal and will not lead to major loss of hydrogen over time. The reservoir modeling results show that optimum gas production-injection scheme needs to be engineered to maintain the required reservoir pressure level in the Tapti-gas field. Also, the deliverability of the various seasonal storage time show that 80 days production scheme will be suitable for efficient operation in this field. Finally, a synergistic scheme to enable green energy production, storage, and transportation is proposed via implementation of UHS in the offshore Tapti-gas field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号