首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 571 毫秒
1.
本文采用热压工艺制备莫来石一氧化锆一碳化硅复相陶瓷;研究了分散相SiC粒子的添加量和粒径对氧化锆增韧莫来石陶瓷力学性能的影响。实验结果表明:SiC添加量在10-30vol%范围之内,材料力学性能有显著提高,其断裂韧性比ZTM材料要提高89%,达8.5MPam^1/2,弯曲强度要提高91%左右,达680MPa;通过对断口进行观察,细SiC粒子强韧ZTM陶瓷主要是通过裂纹钉扎和偏转来实现的,当添加一定  相似文献   

2.
研究了在SiC晶须表面涂覆10~100nm厚的氧化铝或莫来石对15%(vol)SiCw/2.5Y-TZP陶瓷复合材料力学性能的影响。结果表明:涂层可显改善复合材料的力学性能,其中涂覆莫来石效果最佳,室温σ1=1450MPa,K1c=17MPa·m^1/2,1000℃下σf=520MPa,比无涂层的复合材料力学性能分别提高了80%,100%和45%。SEM,TEM和HREM观察表明:SiCw表面涂  相似文献   

3.
原位生成TiB2颗粒增韧SiC基复相陶瓷研究   总被引:7,自引:0,他引:7  
张国军  何余 《硅酸盐学报》1995,23(2):134-140
提出一种新的方法制备SiC-TiB2颗粒复相陶瓷。通过Ti,Si与B4C之间的化学反应在SiC基体中原位生成TiB2颗粒,获得的TiB2颗粒一般在5μm以下,但发现有TiB2颗粒团聚现象。其中SiC-TiB230%(vol)复相陶瓷的断裂韧性和三点弯曲强度分别比SiC基体提高约1倍,达到4.5MPa·m^1/2和400MPa。认为TiB2颗粒与SiC基体之间热膨胀系数不同导致的残余应力场引起的裂纹  相似文献   

4.
高纯莫来石陶瓷的工业应用   总被引:2,自引:0,他引:2  
刘志国 《佛山陶瓷》2001,11(7):31-31
莫来石陶瓷是主晶相为莫来石(3AI2O32SiO2)的一类陶瓷的总称。若以合成的超细高纯莫来石粉末制备出的不含玻璃相的莫来石瓷,又称新莫来石陶瓷,亦即高纯莫来石陶瓷。1优良的性能1.1力学性能 高纯莫来石陶瓷烧结体的力学性能由AI2O3/SiO2之比和显微结构决定,尤其是AI2O3含量为68%的莫来石陶瓷,在1300℃时抗弯强度达570MPa,断裂韧性Kic达5.7MPa.Nm,均比常温时高1.6倍,这种随温度升高、强度和韧性不仅不衰减反而大幅度提高,在现有的高温陶瓷材料中除SiC外,是绝无仅有…  相似文献   

5.
Si3N4/纳米SiC复相陶瓷的研究   总被引:10,自引:0,他引:10  
采用纳米SiC粉体制备了Si3N4/纳米SiCp复相陶瓷。研究了制备工艺、纳米SiC含量对材料性能及显微结构的影响,并对材料显微结构特点与强韧化机制进行了分析 。结果表明:添加20vo%〈100nm的SiC粉体时,复相陶瓷的室温抗弯强度达856MPa,当添加10vo%上述SiC粉体时,复相陶瓷的增韧效果最佳,断裂韧性达8.27MPam^1/2,比基体材料提高了23%。  相似文献   

6.
SiCw/涂层/TZP陶瓷复合材料界面化学键的XPS和IR研究   总被引:4,自引:1,他引:4  
本文用XPS和IR测定了SiCw/(Al2O3,莫来石)涂层/TZP陶瓷复合材料的界面化学键。结果表明SiCw/Al2O3、莫来石、TZP界面为化学结合而Al2O3、莫来石/TZP界面为物理结合。  相似文献   

7.
液相烧结SiC陶瓷   总被引:25,自引:2,他引:23  
采用Y2O3,Al2O3为烧结助剂,研究了烧结助剂的含量及组成对SiC陶瓷的烧结性和力学性能的影响。结果表明,Y2O3,Al2O3原位形成了YAG,材料以液相烧结机制致密化,与传统的固相烧结相比,液相烧结使SiC陶瓷性能显著提高,在较佳条件下,材料强度和韧性分别达到707MPa,10.7MPa·m^1/2,显微结构观察表明,裂纹偏转和微裂纹为主要的增韧机理,这与其弱的界面结合有关,而强度的提高则得  相似文献   

8.
氧化锆增韧堇青石陶瓷的研究   总被引:3,自引:1,他引:3  
添加分散的氧化锆对多晶体堇青石进行了增强和增韧。含10%(按质量计,下同)ZrO2的氧化锆增韧堇青石陶瓷(ZTCC)的抗弯强度(130MPa)较1400℃,6h制备的人工合成高纯多晶堇青石的(74.3MPa)有明显提高。含有5%ZrO2和1%CaO二元弥散相粒子的ZTCC的断裂韧性增大至2.83MPa·m^1/2。当加入15%Y-TZP,样品的抗弯强度和断裂韧性分别高达188MPa和3.2MPa·  相似文献   

9.
Si3N4/SiCp复相陶瓷材料的研究进展   总被引:1,自引:0,他引:1  
概述了SiC颗粒弥散强化Si3N4陶瓷的研究近况,着重讨论了SiC粒子的数量和尺寸对Si3N4/SiCp复相陶瓷材料显微结构和力学性能的影响,并简要介绍了Si3N4/SiCp复相陶瓷材料的烧结机理和SiCp的掺入对材料可烧结性的影响。  相似文献   

10.
反应结合Al2O3—ZrO2—SiC复合陶瓷的制备工艺与性能   总被引:3,自引:0,他引:3  
采用反应结合技术研究了Al2O3-ZrO2-SiC复合陶瓷的制备工艺与材料性能,比较孙同的原料来源对致密化行为及材料性能的影响,含细Al2O3和粗SiC的配方获得了最快的致密化速率及最高的烧结密度,该材料经1550℃烧结30min后再热等静压获得了近100%的致密度和760MPa的弯曲强度。  相似文献   

11.
Flexural creep of ZrB2/0–50 vol% SiC ceramics was characterized in oxidizing atmosphere as a function of temperature (1200°–1500°C), stress (30–180 MPa), and SiC particle size (2 and 10 μm). Creep behavior showed strong dependence on SiC content and particle size, temperature and stress. The rate of creep increased with increasing SiC content, temperature, and stress and with decreasing SiC particle size, especially, at temperatures above 1300°C. The activation energy of creep showed linear dependence on the SiC content increasing from about 130 to 511 kJ/mol for ceramics containing 0 and 50 vol% 2-μm SiC, respectively. The stress exponent was about 2 for ZrB2 containing 50 vol% SiC regardless of SiC particle size, which is an indication that the leading mechanism of creep for this composition is sliding of grain boundaries. Compared with that, the stress exponent is about 1 for ZrB2 containing 0–25vol% SiC, which is an indication that diffusional creep has a significant contribution to the mechanism of creep for these compositions. Cracking and grain shifting were observed on the tensile side of the samples containing 25 and 50 vol% SiC. Cracks propagate through the SiC phase confirming the assumption that grain-boundary sliding of the SiC grains is the controlling creep mechanism in the ceramics containing 50 vol% SiC. The presence of stress, both compressive and tensile, in the samples enhanced oxidation.  相似文献   

12.
ZrC ceramics containing 30 vol% SiC-ZrB2 were produced by high-energy ball milling and reactive hot pressing. The effects of ZrB2 content on the densification, microstructure, and mechanical properties of ceramics were investigated. Fully dense ceramics were achieved as ZrB2 content increased to 10 and 15 vol%. The addition of ZrB2 suppressed grain growth and promoted dispersion of the SiC particles, resulting in fine and homogeneous microstructures. Vickers hardness increased from 23.0 ± 0.5 GPa to 23.9 ± 0.5 GPa and Young’s modulus increased from 430 ± 3 GPa to 455 ± 3 GPa as ZrB2 content increased from 0 to 15 vol%. The increases were attributed to a combination of the higher relative density of ceramics with higher ZrB2 content and the higher Young’s modulus and hardness of ZrB2 compared to ZrC. Indentation fracture toughness increased from 2.6 ± 0.2 MPa⋅m1/2 to 3.3 ± 0.1 MPa⋅m1/2 as ZrB2 content increased from 0 to 15 vol% due to the increase in crack deflection by the uniformly dispersed SiC particles. Compared to binary ZrC-SiC ceramics, ternary ZrC-SiC-ZrB2 ceramics with finer microstructure and higher relative densities were achieved by the addition of ZrB2 particles.  相似文献   

13.
The flexure creep behaviour of monolithic Al2O3 and 10 vol% SiC-particle reinforced Al2O3 matrix composites was investigated in air atmosphere at 1160 to 1400 °C and under a stress of 40 to 125 MPa. Two kinds of SiC particles with different particle sizes and oxygen contents were used in the composites, one having an average size of 0.6 μm with 1.7 vol% SiO2 impurities and the other of average size 2.7 μm with 3.4 vol% SiO2 impurities. Compared with the creep behaviour of monolithic Al2O3 the strain rate of the composites with 0.6 μm SiC particles did not decrease; however, the composites with 2.7 μm SiC particles exhibited excellent creep resistance. Microstructure analysis showed that the Al2O3 grains in the composites with 0.6 μm SiC particles were mainly equiaxed with most of the SiC particles lying at the grain boundaries or triplegrain junctions, whereas the grain features of the composites with 2.7 μm SiC particles were irregular and elongated and most of the SiC particles were entrapped into Al2O3 matrix grains. It was revealed that the entrapment of 2.7 μm SiC particles into Al2O3 matrix grains was related to the high SiO2 impurity content on SiC particle surfaces, and the change of grain morphology and the good high-temperature oxidation resistance were responsible for the creep resistance increase of the composites with 2.7 μm SiC particles.  相似文献   

14.
ZrC–SiC ceramics were fabricated by high-energy ball milling and reactive hot pressing of ZrH2, carbon black, and varying amounts of SiC. The ceramics were composed of nominally pure ZrC containing 0 to 30 vol% SiC particles. The relative density increased as SiC content increased, from 96.8% for nominally pure ZrC to 99.3% for ZrC-30 vol% SiC. As SiC content increased from 0 to 30 vol%, Young's modulus increased from 404 ± 11 to 420 ± 9 GPa and Vickers hardness increased from 18.5 ± 0.7 to 23.0 ± 0.5 GPa due to a combination of the higher relative density of ceramics with higher SiC content and the higher Young's modulus and hardness of SiC compared to ZrC. Flexure strength was 308 ± 11 MPa for pure ZrC, but increased to 576 ± 49 MPa for a SiC content of 30 vol%. Fracture toughness was 2.3 ± 0.2 MPa·m1/2 for pure ZrC and increased to about 3.0 ± 0.1 MPa·m1/2 for compositions containing SiC additions. The combination of high-energy ball milling and reactive hot pressing was able to produce ZrC–SiC ceramics with sub-micron grain sizes and high relative densities with higher strengths than previously reported for similar materials.  相似文献   

15.
The composite sol—gel (CSG) technology has been utilized to process SiC—Al2O3 ceramic/ceramic particulate reinforced composites with a high content of SiC (up to 50 vol%). Alumina sol, resulting from hydrolysis of aluminum isopropoxide, has been utilized as a dispersant and sintering additive. Microstructures of the composites (investigated using TEM) show the sol-originating phase present at grain boundaries, in particular at triple junctions, irrespective of the type of grain (i.e., SiC or Al2O3). It is hypothesized that the alumina film originating from the alumina sol reacts with SiO2 film on the surface of SiC grains to form mullite or alumina-rich mullite-glass mixed phase. Effectively, SiC particles interconnect through this phase, facilitating formation of a dense body even at very high SiC content. Comparative sinterability studies were performed on similar SiC—Al2O3 compositions free of alumina sol. It appears that in these systems the large fraction of directly contacting SiC—SiC grains prevents full densification of the composite. The microhardness of SiC—Al2O3 sol—gel composites has been measured as a function of the content of SiC and sintering temperature. The highest microhardness of 22.9 GPa has been obtained for the composition 50 vol% SiC—50 vol% Al2O3, sintered at 1850°C.  相似文献   

16.
This study suggests a new additive composition based on AlN–Y2O3–Sc2O3–MgO to achieve successful densification of SiC without applied pressure at a temperature as low as 1850 °C. The typical sintered density, flexural strength, fracture toughness, and hardness of the SiC ceramics sintered at 1850 °C without applied pressure were determined as 98.3%, 510 MPa, 6.9 MPa·m1/2, and 24.7 GPa, respectively.Fully ceramic microencapsulated (FCM) fuels containing 37 vol% tristructural isotropic (TRISO) particles could be successfully sintered at 1850 °C using the above matrix without applied pressure. The residual porosity of the SiC matrix in the FCM fuels was only 1.6%. TRISO particles were not damaged during processing, which included cold isostatic pressing under 204 MPa and sintering at 1850 °C for 2 h in an argon atmosphere. The thermal conductivity of the pressureless sintered FCM pellet with 37 vol% TRISO particles was 44.4 Wm?1 K?1 at room temperature.  相似文献   

17.
ZrB2 ceramics containing 10-30 vol% SiC were pressurelessly sintered to near full density (relative density >97%). The effects of carbon content, SiC volume fraction and SiC starting particle size on the mechanical properties were evaluated. Microstructure analysis indicated that higher levels of carbon additions (10 wt% based on SiC content) resulted in excess carbon at the grain boundaries, which decreased flexure strength. Elastic modulus, hardness, flexure strength and fracture toughness values all increased with increasing SiC content for compositions with 5 wt% carbon. Reducing the size of the starting SiC particles decreased the ZrB2 grain size and changed the morphology of the final SiC grains from equiaxed to whisker-like, also affecting the flexure strength. The ceramics prepared from middle starting powder with an equiaxed SiC grain morphology had the highest flexure strength (600 MPa) compared with ceramics prepared from finer or coarser SiC powders.  相似文献   

18.
Carbon foam templates were prepared from a mixture of mesophase pitch (MP) and Si particles, followed by foaming and carbonization. Subsequent molten Si infiltrated into the carbon foam at 1500°C for 4 h in an inert atmosphere resulted in the formation of porous SiC ceramics. Micrographs were investigated by a scanning electron microscope (SEM), and phase identification of porous SiC ceramics was performed by X-ray diffraction (XRD). The flexural strength and bulk density of porous SiC ceramics were also measured and calculated. The results revealed that the flexural strength of porous SiC ceramics increases with increasing Si content and decreasing porosity. The addition of Si in MP results in an increased densification of porous SiC struts. With 50 wt% Si, porous SiC ceramics with a high flexural strength of 23.9 MPa and a porosity of 55% were obtained.  相似文献   

19.
In this research, we investigated the effects of SiC and multi-walled carbon nanotube (MWCNTs) addition on the densification and microstructure of titanium nitride (TiN) ceramics. Four samples including monolithic TiN, TiN-5?wt% MWCNTs, TiN-20?vol% SiC and TiN-20?vol% SiC-5?wt% MWCNTs were prepared by spark plasma sintering at 1900?°C for 7?min under 40?MPa pressure. X-ray powder diffraction patterns and scanning electron microscope (SEM) micrographs of the prepared ceramics showed that no new phase was formed during the sintering process. The highest calculated relative density was related to the TiN ceramic doped with 20?vol% SiC, while the sample doped with 5?wt% MWCNTs presented the lowest density. In addition, the SEM investigations revealed that the addition of sintering aids e.g. SiC and MWCNTs leads to a finer microstructure ceramic. These additives generally remain within the spaces among the TiN particles and prohibit extensive grain growth in the fabricated ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号