首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
为探究双丙胶乳生产工艺热危险性及其产物的热分解特性,开展双丙胶乳合成工艺试验,采用全自动反应量热仪(RC1e),测定反应过程中的放热特性;采用同步热重(TG)分析仪,测试反应产物在空气和氮气气氛中的热解性能;评估反应过程的热危险性,分析反应生成的双丙胶乳的热分解过程,并运用等转化率动力学方法(Starink法和Friedman法)计算产物热分解过程中的表观活化能(Ea)。结果表明:双丙胶乳生产工艺的反应热危险性等级为1级,相对安全;在空气气氛下,双丙胶乳的热分解过程包括4个阶段,且几乎无残余,而在氮气气氛下,双丙胶乳的热分解过程分为3个阶段,残炭率约为9. 22%;通过Starink法和Friedman法计算得到的Ea范围分别为32. 65~113. 45 kJ/mol和29. 70~175. 90 kJ/mol。  相似文献   

2.
为探究聚氨酯对煤自燃的危险性影响,利用热分析技术分析聚氨酯加入前后的动力学特征;采用Flynn-Wall-Ozawa (FWO)和Starink这2种动力学模型,计算处理动力学参数,并采用Bagchi法确定机理函数→机理函数。结果表明:当聚氨酯存在时,前期(168~300℃)反应会加快,失重速率大大增加,但到后续高温阶段(465~714℃)时,活化能相比加入聚氨酯前增大约6 kJ/mol,失重变得缓和,当反应停止时,最终的剩余质量近似为0,反应相对煤单独热解时进行得更为充分彻底;无烟煤以及其与聚氨酯混合后分别遵循随机成核和随后生长机制以及一级化学反应机制。  相似文献   

3.
采用差示扫描量热仪(DSC)对小尺度过氧化二异丙苯(DCP)的热分解过程进行试验研究,利用基于等转化率Friedman微分法对热分析试验所得数据进行动力学分析,得出DCP的反应活化能的均值为160.82 kJ· mol-1.最后运用热爆炸理论对25 kg标准包装条件下的自加速分解温度(SADT)进行推算.结果表明,利用等转化率Friedman 微分法计算所得的动力学参数在整个反应进程中并不是常数,表明DCP的热分解反应是一个固态的复杂反应过程.多重扫描速率下计算所得的动力学参数较单个扫描速率法可信度更高,推算所得DCP的SADT值与美式全尺寸试验值基本一致.  相似文献   

4.
为了分析过氧化二异丙苯(Dicumyl Peroxide,DCP)的热稳定性和热安全性,利用C80微量量热仪对DCP在空气中的热分解及稳定性能进行试验研究,得到了升温速率对DCP热分解的影响规律,运用AKTS高级热动力学软件计算得到DCP热分解的活化能及指前因子、绝热条件下最大反应速率到达时间TMRad和不同包装下的自加速分解温度。结果表明:随升温速率增加,DCP的起始放热温度和最大放热温度升高;并由Friedman法得到不同转化率下活化能E和指前因子A的关系,计算得到DCP热分解的活化能范围为50~130 kJ/mol;TMRad为1 h、8 h、24 h、50 h和100 h时对应的起始温度分别为105.33℃、84.38℃、74.38℃、68℃和62℃;DCP的储罐内径越大,其对应的自加速分解温度越低。在生产、制造、储存、运输等过程中,应防止因温度变化而引发DCP的自分解放热爆炸事故。  相似文献   

5.
利用热重分析方法对化学纯FeS的氧化自燃性及其动力学规律进行了研究,分析了粒径178μm的FeS在室温~1 000℃温度范围内的热重曲线,考察了升温速率对热重曲线的影响,并采用FWO方法计算了FeS氧化自燃的活化能。结果表明,FeS与氧气发生化学反应时迅速失重,升温速率对TG曲线有明显影响,升温速率越大,TG曲线向高温方向移动,氧化速度减小;FeS氧化过程符合n=0.381 7的随机成核和随后生长动力学反应机理,动力学模型函数的积分形式g(α)=ln[-ln(1-α)]-0.381 7,粒径178μm的FeS氧化时的活化能约为133.45 kJ/mol,动力学指前因子A=1×106.065 9s-1。  相似文献   

6.
为研究二叔丁基过氧化物(DTBP)热失控危险性,利用C600微量量热仪对DTBP热分解动力学进行试验研究,测定DTBP在不同升温速率下的起始放热温度和分解热,分别用非等转化率法和等转化率法得到DTBP热分解反应的动力学参数。用非等转化率法确定反应的最佳反应级数为1,相应的活化能分别为137.75、132.60、128.61和122.93 kJ/mol,指前因子分别为8.82×1012、6.69×1012、2.06×1012和3.89×10111/s。用等转化率法确定的活化能范围为102~138 kJ/mol,并拟合出活化能与转化率的关系曲线。结合计算出的动力学参数,通过对DTBP分解机理的分析,可以推断其具有热失控危险性。  相似文献   

7.
硫酸羟胺的热分解动力学研究   总被引:1,自引:0,他引:1  
通过差示扫描量热(DSC)法研究了硫酸羟胺(HAS)的热稳定性能及其在不同温升速率(4℃/min、7℃/min、10℃/min)下的热分解动力学;由同步热分析仪(STA)测试得到的DSC热流数据,运用AKTS高级热动力学分析软件计算得到硫酸羟胺的活化能、指前因子和反应焓等热动力学参数.结果表明:硫酸羟胺在空气气氛中发生自分解放热反应,反应热为118.8±2.1kJ/mol;根据Ozawa法得到的活化能为82.45kJ/mol,并由Friedman法得到了不同转化率下的活化能E及指前因子A的关系,计算得到的反应热为116.2±1.lkJ/mol.最后,结合硫酸羟胺的生产工艺条件,对硫酸羟胺的安全生产工艺进行了分析讨论.在储存、运输过程中,应防止因温度变化而引发硫酸羟胺的自分解放热爆炸事故,实验研究结果对实际的工业生产过程具有一定的参考意义和指导价值.  相似文献   

8.
FeS的氧化放热是引起石油储罐火灾与爆炸事故的主要原因.采用同步热分析仪对FeS的氧化倾向性及其热动力学规律进行研究,主要分析粒径为0.062~0.074mm的FeS在常温至900℃范围内的DSC/TG试验曲线,运用FWO、Kissinger、Friedman等多种等转化率法计算FeS的活化能和指前因子.其中FWO和Kissinger法的计算结果较为接近,可靠度较高.结合Malek法提出的y(α)-α标准曲线,推断出最概然机理函数为f(α)=(1-α)2.这说明FeS的氧化自燃反应符合二级普通化学反应机理.  相似文献   

9.
为分析乳化剂对乳化炸药热稳定性影响,用热重差热联用热分析仪(TG-DTA-DTG)分析乳化炸药热分解特性,根据Kissinger法计算乳化炸药热分解动力学参数。研究结果表明:大豆磷脂显著降低乳化炸药体系的峰温;含有大豆磷脂的乳化炸药热分解曲线有分裂峰;大豆磷脂在145℃发生自分解,其对乳化炸药活化能值影响不大。大豆磷脂对乳化炸药热稳定性影响的机理可能是大豆磷脂中的活性小分子物质诱导乳化炸药中的硝酸铵离解反应产物在较低温度下参与反应,从而使乳化炸药热稳定性降低。  相似文献   

10.
过氧化氢异丙苯热稳定性与热安全性研究   总被引:2,自引:1,他引:1  
为研究过氧化氢异丙苯(CHP)的热稳定性和热安全性,利用C80微量量热仪对CHP在空气中的热分解进行试验研究。利用热分析技术研究CHP的热分解,得到了升温速率对CHP热分解的影响,CHP热分解的活化能,绝热条件下最大反应速率到达时间Tmrad和不同包装下的自加速分解温度。结果表明:随着升温速率的增加,CHP的起始放热温度和最大放热温度随之升高;CHP热分解的活化能范围为52~91 kJ/mol;Tmrad为1,8,24,50和100 h时对应的起始温度分别为118.08,75.41,55.83,44.83和34.52℃;CHP的储罐内径越大,其对应的自加速分解温度越低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号