首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine small (2·5 ha) and four large (70–135 ha) watersheds were instrumented in 1999 to evaluate the effects of intensive silvicultural practices with best management practices (BMPs) on runoff and stream water quality in the Western Gulf Coastal Plain of East Texas, USA. Two treatments were implemented in 2002: a conventional treatment with clearcutting and herbicide site preparation, and an intensive treatment that added subsoiling, fertilization and a release herbicide application. Watershed effects were compared with results from a previously conducted study on the same watersheds in 1981, in which two combinations of harvesting and mechanical site preparation without BMPs were evaluated. Due to the reduction in evapotranspirational demand, total storm runoff increased on all six treated small watersheds following harvest by 0·94 to 13·73 cm in 2003. Runoff increases were not statistically significant on the treated large watersheds. Total first‐year sediment loss was significantly greater on two of the conventional and one of the intensive small watersheds. The greatest first‐year increase was 540·1 kg ha?1, only one‐fifth of that observed on these watersheds from shearing and windrowing without BMPs in 1981. First‐year sediment loss was significantly greater on the intensive large watershed following harvest, but not on the conventional large watershed. These data suggest that BMPs are very effective in reducing potential water quality impacts from intensive silvicultural practices. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
lINTRoDUCTIONAbroadobjectiveofcooperativeresearchattheNorthwestWatershedResearchCenterandEco-HydraulicsResearchGroupistodevelopdetailedunderstandingofthetemporalandspatialvariabilityofstreamflow,sedimentandwaterquaIityconstituentsinacontinuumfromheadwatersthroughestuaries.Thispaperpresentsselectedaspectsofourongoingresearch,focusedonstreamsystemsinsemi-arid,uplandrangelandwatersheds.Publicawarenessoftheroleofriversinregionalecologicalsystems,andconcernforpreserving,enhancingandrestorin…  相似文献   

3.
《国际泥沙研究》2016,(4):386-394
Identification of areas contributing disproportionately high amount of pollutants (i.e., critical source areas (CSAs)) to streams is important to efficiently and effectively target best management practices (BMPs). Process-based models are commonly used to identify CSAs and evaluate the impact of alternative management practices on pollutant load reductions. The objective of this study was to use the Soil and Watershed Assessment Tool (SWAT) to identify CSAs at the subwatershed level and evaluate the impact of alternative BMPs on sediment and total phosphorus (TP) load reductions in the Pleasant Valley watershed (50 km2) in South Central Wisconsin (USA). The Nash-Sutcliffe efficiency, percent bias, and coefficient of determination ranged from 0.58 to 0.71, ? 12.87 to 38.33, and 0.67 to 0.79, respectively, indicating that SWAT was able to predict stream flow, sediment and TP loadings at a monthly time-step with sufficient accuracy. Based on the SWAT simulation results, annual average (2006–2012) sub-watershed yield for sediment and TP ranged from 0.06 to 3.14 tons ha?1 yr?1 and 0.04 to 1.9 kg ha ? 1 yr ? 1, respectively. The croplands were the major source of sediment and TP in this watershed ( Z 84%). Reduction in sediment and TP loading ranged from 66%to 99%at the subwatershed level after conversion of croplands to Conservation Reserve Program (CRP) grasslands in subwatersheds identified as CSAs. On the other hand, reduction in sediment and TP loading with implementation of no-till practices ranged from only 14%to 25%. At the watershed outlet, sediment and TP loading reduction was r 15% after conversion of croplands to CRP grasslands and implementation of no-till practices because only about 8%of the watershed area was targeted for BMPs and/or resuspension of sediment deposited on the stream bed masked the downstream improvements in water quality.  相似文献   

4.
The pre‐calibrated and validated physically based watershed model, water erosion prediction project (WEPP) was used as a modelling tool for the identification of critical watersheds and evaluation of best management practices for a small hilly watershed (Karso) of India. The land use/cover of the study area was generated using IRS‐1C LISS‐III (linear imaging self scanner) satellite data. The watershed and sub‐watershed boundaries, drainage, slope and soil map of the study area were generated using ARC/INFO geographic information system (GIS). The WEPP model was finally applied to the Karso watershed which lies within Damodar Barakar catchment of India to identify the critical sub‐watersheds on the basis of their simulated average annual sediment yields. Priorities were fixed on the basis of ranks assigned to each critical sub‐watershed based on the susceptibility to erosion. The sub‐watershed having the highest sediment yield was assigned a priority number 1, the next highest value was assigned a priority number 2, and so on. Subsequently, the model was used for evaluating the effectiveness of best management practices (crop and tillage) for conservation of soil for all the sub‐watersheds. On the basis of this study, it is realized that cash crops like soyabean should be encouraged in the upland portion of the sub‐watersheds, and the existing tillage practice (country plough/mould board plough) may be replaced by a field cultivation system for conservation of soil and water in the sub‐watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   

6.
Elevated turbidity (Tn) and suspended sediment concentrations (SSC) during and following flood events can degrade water supply quality and aquatic ecosystem integrity. Streams draining glacially conditioned mountainous terrain, such as those in the Catskill Mountains of New York State, are particularly susceptible to high levels of Tn and SSC sourced from erosional contact with glacial-related sediment. This study forwards a novel approach to evaluate the effectiveness of stream restoration best management practices (BMPs) meant to reduce stream Tn and SSC, and demonstrates the approach within the Stony Clove sub-basin of the Catskills, a water supply source for New York City. The proposed approach is designed to isolate BMP effects from natural trends in Tn and SSC caused by trends in discharge and shifts in average Tn or SSC per unit discharge (Q) following large flood events. We develop Dynamic Linear Models (DLMs) to quantify how Tn-Q and SSC-Q relationships change over time at monitoring stations upstream and downstream of BMPs within the Stony Clove and in three other sub-basins without BMPs, providing observational evidence of BMP effectiveness. A process-based model, the River Erosion Model, is then developed to simulate natural, hydrology-driven SSC-Q dynamics in the Stony Clove sub-basin (absent of BMP effects). We use DLMs to compare the modelled and observed SSC-Q dynamics and isolate the influence of the BMPs. Results suggest that observed reductions in SSC and Tn in the Stony Clove sub-basin have been driven by a combination of declining streamflow and the installed BMPs, confirming the utility of the BMPs for the monitored hydrologic conditions.  相似文献   

7.
8.
Timber harvest temporarily increases water yield; however, relationships between hydrologic and nutrient chemistry changes have not been consistent. This study quantified the effects of forest harvesting and site preparation without fertilization and with modern best management practices on nutrient concentrations and yields in small headwater streams of the Southeastern Coastal Plain. We monitored two watershed pairs for 2 years prior to and 1 year following timber harvest and for 2 more years following site preparation and planting. Treatment watersheds were clearcut, and downstream portions of streamside management zones were thinned in Fall 2003. Site preparation (herbicide application and burning) and planting followed a year later. All operations followed 1999 Georgia forestry best management practices. Previously published research revealed a large increase in water yield following harvest. Nutrient concentrations varied significantly within and between monitoring periods, even in reference watersheds. Silvicultural activities had no discernible effect on phosphorus and ammonium concentrations; however, statistically significant increases in nitrate/nitrite (67–340 µg L−1) and total nitrogen concentrations (100–400 µg L−1) in treatment watersheds followed stand re‐establishment. Nutrient yields increased after timber harvest largely as a result of increased water yields, although increased nutrient yields were small relative to inter‐annual and inter‐watershed variability and variability. Annual water yield largely explained the variability in annual nitrogen and phosphorus export from reference and treatment streams (r2 values from 0.65 to 0.98). High NOx concentrations coming from an upstream agricultural area decreased 1600–1800 µg L−1 over several hundred metres in the treatment streams by dilution, uptake or denitrification. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   

10.
Summer stream water quality was monitored before and following the logging of 50% of the boreal forest within three small watersheds (<50 ha) nested in the ‘Ruisseau des Eaux‐Volées’ Experimental Watershed, Montmorency Forest (Québec, Canada). Logging was conducted in winter, on snow cover according to recommended best management practices (BMPs) to minimize soil disturbance and protect advance growth. A 20‐m forest buffer was maintained along perennial streams. In watershed 7·2, cut‐blocks were located near the stream network and logging was partially allowed within the riparian buffer zone. In watersheds 7·5 and 7·7, logging occurred farther away from the stream network. Observations were also made for watershed 7·3 that collected the runoff from watersheds 7·2 and 7·5, and watershed 7·6, the uproad portion of watershed 7·7. The control watershed 0·2 was contiguous to the impacted watersheds and remained undisturbed. Following clearcutting, changes in summer daily maximum and minimum stream temperatures remained within ± 1 °C while changes in diurnal variation did not decrease by more than 0·5 °C. Concentrations of NO3? greatly increased by up to 6000% and concentrations of K+ increased by up to 300% during the second summer after logging. Smaller increases were observed for Fetotal (up to 71%), specific conductance (up to 26%), and Mg2+ (up to 19%). Post‐logging pH decreased slightly by no more than 7% while PO43? concentration remained relatively constant. Suspended sediment concentrations appeared to increase during post‐logging, but there was not enough pre‐logging data to statistically confirm this result. Logging of moderate intensity and respecting established BMPs may account for the limited changes of water quality parameters and the low exceedances of the criteria for the protection of aquatic life. The proximity of the cutover to the stream network and logging within the riparian zone did not appear to affect water quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
B. Yu  Z. Zhu 《水文科学杂志》2015,60(7-8):1200-1212
Abstract

The Australian Water Balance model (AWBM) and the SimHyd rainfall–runoff model are conceptual models widely used for simulating daily flows in Australia. To evaluate their ability to model non-stationary daily flows, to quantify the effect of land disturbance, and to assess their performance in catchments outside Australia, these two models were applied to two small watersheds, the Fernow watershed No. 6 in West Virginia, USA, for the period 1959–2009, and the River Rimbaud watershed in the French Alps for the period 1968–2006. Both watersheds have experienced well documented disturbances as a result of clearing and fire, respectively. The modelling protocol followed was adopted for a workshop on hydrology under change, held during the 2013 IAHS Assembly in Göteborg, Sweden, which was based on split-sample tests. On balance, the AWBM worked marginally better than SimHyd for these two catchments, and neither model worked satisfactorily for the Fernow watershed where forest clearing, application of herbicide and changes in species composition had occurred. There is little difference in terms of model performance between periods when land disturbances occurred and other periods with relatively stable conditions. Conceptual models are better equipped to simulate climate-driven variations in the observed streamflow (e.g. the River Rimbaud), and inadequate in reproducing streamflow variability as a result of complex forest management practices.  相似文献   

12.
Lake Erie is located in North America with its southern shoreline bordering Ohio, as well as parts of Michigan, Pennsylvania and New York. A one-year study investigated nutrient pollution in a Central Basin Lake Erie headwater tributary watershed near Cleveland Ohio. Results suggest that the 2019 annual phosphorus load entering Lake Erie from the Euclid Creek watershed was approximately 22,600 pounds, over four times the watershed’s target of 5545 pounds. Multiple upstream sites were the major nonpoint sources of nutrient pollution. Four sampling sites averaged phosphorus levels 12–15 times the watershed target of 0.05 mg/L. Leaking sanitary sewers in residential areas were believed to contribute more pollution than the three golf courses and the regional airport located within the watershed. The presence of the Cleveland Metroparks along the riparian corridor in the Main Branch significantly reduced (p < 0.05) nutrients during dry weather. In particular, stream restoration within the Acacia Reservation lowered phosphorus levels by an average 0.31 mg/L. Spring storms contributed the most to the annual phosphorus load (∼47 %). To mitigate nutrient pollution in urban watersheds, best management practices (BMPs) would require a two-fold strategy. During dry weather, BMPs should incorporate stream restoration and forested riparian buffers where feasible. Green infrastructure should be designed to mitigate the impact of wet-weather storm-induced flows.  相似文献   

13.
Historically, paired watershed studies have been used to quantify the hydrological effects of land use and management practices by concurrently monitoring 2 similar watersheds during calibration (pretreatment) and post‐treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control–treatment watershed pair when the regression coefficients for daily water table elevation were most stable to minimize regression model uncertainty. The control and treatment watersheds were 1 watershed of 3–4‐year‐old intensely managed loblolly pine (Pinus taeda L.) with natural understory, 1 watershed of 3–4‐year‐old loblolly pine intercropped with switchgrass (Panicum virgatum), 1 watershed of 14–15‐year‐old thinned loblolly pine with natural understory (control), and 1 watershed of switchgrass only. The study period spanned from 2009 to 2012. Silvicultural operational practices during this period acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. MOSUM results indicated significant changes in regression parameters due to silvicultural operations and were used to identify stable relationships for water table elevation. None of the calibration relationships developed using this method were significantly different from the classical calibration relationship based on published historical data. We attribute that to the similarity of historical and 2010–2012 leaf area index on control and treatment watersheds as moderated by the emergent vegetation. Although the MOSUM approach does not eliminate the need for true calibration data or replace the classic paired watershed approach, our results show that it may be an effective alternative approach when true data are unavailable, as it minimizes the impacts of external disturbances other than the treatment of interest.  相似文献   

14.
M. E. Grismer 《水文研究》2014,28(2):161-170
Establishment and ‘crediting’ for total maximum daily loads (TMDL) of sediment require development of stream monitoring programs capable of detecting changes in land use and erosion ‘connectivity’ conditions across the watershed. As a ‘proof of concept’ directed at developing such an effective stream monitoring program considering only the effects of soil disturbances or restoration in the Lake Tahoe Basin, variability in daily stream sediment load predictions from a local‐scale, field data–based distributed runoff and erosion model developed previously is analysed for the west‐shore watersheds of Homewood (HMR) and Madden Creeks. The areal extent effects of forest fuel reductions (slight soil disturbances in Madden) and soil restoration efforts (e.g. dirt road removal and ski‐run rehabilitation in HMR) on watershed daily sediment loads for the 1994–2005 period are considered. Based on model predictions, forest fuel management in the Madden Creek watershed must occur across more than 30% of the basin area to result in a detectable increase in daily sediment loads at the >95% confidence level. Similarly, a daily load reduction that could be assessed with >95% confidence within the HMR basin required substantial dirt road removal (50% by roaded area) and restoration of 20% of the ski‐run area (combined for ~5% of the basin area) for the 11‐year record but was also possible within 2–3 years following restoration. These modelling results suggest that despite considerable flow–load variability, it may be possible to detect cumulative changing land‐use conditions within several years of project completion such that quantitative TMDL ‘crediting’ may be developed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   

16.
Contemporary watershed management practices can reflect oversimplifications of relationships between anthropogenic pressures and resource degradation. Remediation and restoration efforts often focus on recent land use practices as the primary driver of hydrologic regime changes. We present a case study that serves as an example to the scientific and watershed management communities of the lasting influences of historic land use practices and natural physical processes on a stream in the central United States listed as impaired by the federal government. Abnormal spatiotemporal streamflow relationships, determined by means of an experimental watershed study, alerted the authors to possible sink/source behavior in the upper‐watershed. Subsequent research uncovered archival evidence of coal mining, which may provide at least partial explanation. Additional investigation identified hydrologic processes associated with natural landscape evolution, noted by early‐20th‐century researchers, which are considered in the context of the current water quality and flow regime. Despite best‐intended management practices, regulatory agencies, scientists, and local decision makers have not accounted for such practices and processes, instead relying on recent development as the proximate cause of designated impairment. We present argumentation that historic land use (coal mining) and landscape processes comprise cumulative yet unconsidered legacy effects that contribute systemically to the observed hydrologic regime of the watershed. Results hold important implications for contemporary watershed management, and support rethinking the case‐by‐case appropriateness of federal and state water impairment listings, and the achievability of restoration efforts in many developing watersheds.  相似文献   

17.
Many intra and extra problems occurred due to unsustainable human use of natural resources leading to increasing sediment loads in the watersheds.However,few studies have been comprehensively conducted in progressing countries to prioritize sediment sources from different points of views,particularly in some countries like Iran where such valuable information is essential for proper watershed resources management.The present study was therefore planned to assess the importance of potential sediment sources viz.,spatial sources(geologic units) and source types(land use units) in sediment yield in Idelo watershed as one of the important sub-watersheds of Sefidrood large Watershed in Zanjan Province,Iran,using composite fingerprinting.In addition,the results of the sediment fingerprinting approach were compared with those of field measurement data obtained from studying soil erosion types(viz.,sheet,rill and gully erosion).Toward this attempt,16 tracers were detected in different geologic units and land uses and the sediment yielded at the watershed outlet.The results showed that the composite fingerprints of the different geologic units comprising As,N,Cu,Zn,OC and Co tracers could correctly distinguish 86% of the sediment source samples.The red gypsiferous marl contributed 85 percent in sediment yield.In regard to source types,the optimum composite fingerprint encompassed only N and Cu and provided a discriminatory efficiency of 90%.Besides that,the rangelands with 48.8% study area coverage had a significant contribution of 88% in sediment yield.The field measurements confirmed the reliability of results of fingerprinting approach in apportioning watershed scale sediment sources on the base of consistency of the two sets of results.It was also understood from the results,besides successful applicability of composite fingerprinting in assessing the provenance of the sediment yielded at the watershed outlet that the geologic formations and land use types played different roles in sediment yield.Such information helps managers and decision makers to properly regulate appropriate and adaptive management approaches in the study watershed.  相似文献   

18.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The Caspar Creek Experimental Watersheds are the site of a long-term paired watershed study in the northern Coast Ranges of California. The watersheds are predominately forested with coast redwood and Douglas-fir. Old-growth forest was logged between 1860 and 1904. Two harvesting experiments have been completed since then and a third experiment is currently underway. Caspar Creek data are split into three phases corresponding to three experiments: Phase 1 (1962–1985) reports on a selection harvest (1971–1973) and initial recovery in the South Fork watershed; Phase 2 (1985–2017) includes clearcut harvesting of ~50% of the North Fork watershed (1985–1992) and recovery; and Phase 3 (2017 onward) corresponds to a second selection harvest in the South Fork watershed with a range of subwatershed harvest intensities (2017–2019) and recovery. All three experiments included harvest-related road-building and relied primarily on measurements of streamflow and sediment delivery from both treated and reference watersheds. Major findings include modest increases in post-harvest peak flows and cumulative flow volumes, post-harvest low flows that initially increased and then decreased 12 to 15 years after harvesting, and the consequences of different yarding techniques and road design on sediment yields. Some of the data for Phase 1 and Phase 2 are available in a USDA Forest Service online archive. The archived data include precipitation, streamflow, suspended sediment concentrations, turbidity, accumulated weir pond sediment volumes, bedload transport rates, water stable isotope data, and geospatial data. Archiving activities are ongoing. Phase 3 data are currently being collected and will be archived after a post-harvest monitoring period.  相似文献   

20.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号