首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
Cells expressing mesenchymal/basal phenotypes in tumors have been associated with stem cell properties. Cancer stem cells (CSCs) are often resistant to conventional chemotherapy. We explored overcoming mesenchymal CSC resistance to chemotherapeutic agents. Our goal was to reduce CSC numbers in vivo, in conjunction with chemotherapy, to reduce tumor burden. Analysis of clinical samples demonstrated that COX‐2/PGE2/EP4 signaling is elevated in basal‐like and chemoresistant breast carcinoma and is correlated with survival and relapse of breast cancer. EP4 antagonism elicts a striking shift of breast cancer cells from a mesenchymal/CSC state to a more epithelial non‐CSC state. The transition was mediated by EP4 antagonist‐induced extracellular vesicles [(EVs)/exosomes] which removed CSC markers, mesenchymal markers, integrins, and drug efflux transporters from the CSCs. In addition, EP4 antagonism‐induced CSC EVs/exosomes can convert tumor epithelial/non‐CSCs to mesenchymal/CSCs able to give rise to tumors and to promote tumor cell dissemination. Because of its ability to induce a CSC‐to‐non‐CSC transition, EP4 antagonist treatment in vivo reduced the numbers of CSCs within tumors and increased tumor chemosensitivity. EP4 antagonist treatment enhances tumor response to chemotherapy by reducing the numbers of chemotherapy‐resistant CSCs available to repopulate the tumor. EP4 antagonism can collaborate with conventional chemotherapy to reduce tumor burden.  相似文献   

2.
马爽  窦赫  刘宇琪  邾月  肖敏 《现代肿瘤医学》2021,(18):3295-3299
乳腺癌是全球女性最常发生的恶性肿瘤,患者死亡的主要原因是复发、转移和耐药性的出现。研究已经证明,外泌体介导癌细胞与肿瘤微环境之间的信息交流,外泌体携带的miRNAs通过差异表达于乳腺癌细胞,在微环境中影响癌基因表达的调控,介导乳腺癌细胞的信号通路,调节癌细胞周期进程以及重塑肿瘤相关成纤维细胞等,从而促进乳腺癌的发生、发展和转移;另外外泌体介导中和、药物外排和免疫系统抑制三种主要机制导致耐药性。未来,各种类型乳腺癌中差异表达的miRNAs有望成为临床诊断和预后的相关生物标志物,及抗肿瘤治疗的新靶点。  相似文献   

3.
Extracellular vesicles (EVs) are intercellular communication agents that transfer microRNAs (miRNAs), other non-coding RNAs (ncRNAs), messenger RNAs (mRNAs), proteins, lipids, metabolites, and other molecules from donor cells (e.g., cancer cells) to recipient cells (e.g., stromal cells). In 2007, miRNAs were reported to be abundant among the ncRNAs present in EVs. Since then, many studies have investigated the functions of miRNAs and have attempted to apply these molecules to aid in the diagnosis and treatment of cancer. Research on EVs has expanded, particularly in the field of cancer, because cancer cells heavily secrete EVs. The cargo of these EVs, especially those in small EVs, such as exosomes, is assumed to work cooperatively and significantly in the tumor microenvironment and to promote metastasis. In this review, we first summarize recent studies on EVs in gastrointestinal cancer and highlight studies on human satellite II RNAs, which are a type of ncRNA found in EVs that possess repetitive sequences. Second, since several recent studies have revealed that phospholipids, which are components of EV membranes, play important roles in intercellular communication and the generation of lipid mediators in the tumor microenvironment, we review the reported roles of these molecules and discuss their potential use in the design of new cancer treatments.  相似文献   

4.
Chemotherapy plays an important role in controlling cancer progression, but the long-term use of chemotherapeutic agents can lead to drug resistance and eventually treatment failure. Therefore, elucidation of the mechanism of drug resistance is the key to solve the problem of chemotherapy resistance. In recent years, exosomes derived from tumor cells have received extensive attention from researchers. In this paper, we reviewed the role and mechanism of exosome-mediated tumor drug resistance in recent years, summarized the related studies of exosome and chemotherapy drug resistance, and focused on several different ways by which exosomes participate in tumor drug resistance. It includes the transporters of non-coding RNAs (ncRNAs), active proteins, stromal cell-derived exosomes and exosomes that directly mediate the efflux of drug molecules. Our review suggests that exosomes can play a role in the treatment of tumor drug resistance by inhibiting the secretion of exosomes, providing a new idea for the prevention and treatment of tumor chemotherapy drug resistance.  相似文献   

5.
Extracellular vesicles (EVs), including exosomes, play a key role in inter and intracellular communication, promoting the proliferation and invasion of recipient cells to support tumor growth and metastasis. Metastasis comprises multiple steps that first include the detachment of tumor cells through epithelial to mesenchymal transition (EMT), allowing the physical dissemination to distant organs. Thereafter, cancer‐derived exosomes are still critical components for preparing the tumor microenvironment by (i) enabling tumor cells to escape from the immunological surveillance and (ii) arranging the pre‐metastatic site for the engraftment of detached cancer cells. In this review, we discuss the multifaceted role of EVs in the multiple steps of metastasis. Future research directions draw attention to EVs as biological targets for cancer diagnosis, prognosis and therapy. However, due to their significant role in cell communication, they may become a valuable drug delivery system.  相似文献   

6.
外泌体是细胞通过旁分泌释放的一种囊泡状结构,在其脂质双层膜结构内包裹大量生物活性物质。研究表明非小细胞肺癌(NSCLC)外泌体参与细胞及微环境的改变,诱导NSCLC细胞对化疗药物获得性耐药。研究外泌体对于肺癌获得性耐药的分子机制、早期诊断、新型药物载体设计等方面具有独特的应用价值。本综述主要介绍近年来外泌体与NSCLC耐药的研究进展。  相似文献   

7.
The unique extracellular vesicles (EVs) or exosomes formed by the sequential invagination of the plasma membrane are diverse and encompass important constituents with biological functions. Speculations on its cell independent biological functions are significant and pose them as vital biomarkers and as drug delivery vehicles especially in cancer. EVs possess theragnostic values and are known to elicit specific immune response. Exosomes can also serve as potential nanocarriers for delivering miRNA, siRNA, anti-cancer drugs and membrane-associated proteins. Exosomes play a crucial role in regulating tumour progression, metastasis, and angiogenesis. This review thus portrays the multiple facets of exosomes, in concert with the source for exosomes production and further on its regulation and intercellular communication. The review also explores the recent advances, present status and the future prospective in the application of exosomes in cancer therapeutics and cancer diagnostics.  相似文献   

8.
乳腺癌是一种具有异质性的全身性疾病,其微环境主要由肿瘤细胞及多种非肿瘤细胞组成。其中间充质干细胞在肿瘤的发生发展中发挥着重要作用。间充质干细胞可直接通过缝隙连接、膜受体和微管或间接通过可溶性分子与肿瘤细胞及其微环境相互作用。肿瘤相关成纤维细胞来源于癌旁成纤维细胞或间充质干细胞,在肿瘤耐药过程中发挥重要作用。在乳腺癌中,肿瘤干细胞与其所处微环境处于动态平衡状态,其表型受细胞因子的密切调控。间质细胞通过与乳腺癌细胞的相互作用,进而对其生物学特性产生重要影响。另外,间质细胞可改变肿瘤细胞对化疗药物的敏感性,进而使其产生耐药。因此,解决肿瘤间质细胞介导的化疗耐药是成功治疗中晚期乳癌的关键。本文主要阐述了间质细胞在乳腺癌微环境中介导化疗耐药的研究进展。  相似文献   

9.
Overexpression of P‐glycoprotein (P‐gp) contributes to the multidrug resistance (MDR) phenotype found in many cancer cells. P‐gp has been identified as a promising molecular target, although attempts to find successful therapies to counteract its function as a drug efflux pump have largely failed to date. Apart from its role in drug efflux, P‐gp may have other cellular functions such as being involved in apoptosis, and is found in various locations in the cell. Its expression is highly regulated, namely by microRNAs (miRNAs or miRs). In addition, P‐gp may regulate the expression of miRs in the cell. Furthermore, both P‐gp and miRs may be found in microvesicles or exosomes and may be transported to neighboring, drug‐sensitive cells. Here, we review this current issue together with recent evidence of this network of interactions between P‐gp and miRs.  相似文献   

10.
The interaction between tumor cells and their microenvironment is an essential aspect of tumor development. Therefore, understanding how this microenvironment communicates with tumor cells is crucial for the development of new anti-cancer therapies. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression. They are secreted into the extracellular medium in vesicles called exosomes, which allow communication between cells via the transfer of their cargo. Consequently, we hypothesized that circulating endothelial miRNAs could be transferred to tumor cells and modify their phenotype. Using exogenous miRNA, we demonstrated that endothelial cells can transfer miRNA to tumor cells via exosomes. Using miRNA profiling, we identified miR-503, which exhibited downregulated levels in exosomes released from endothelial cells cultured under tumoral conditions. The modulation of miR-503 in breast cancer cells altered their proliferative and invasive capacities. We then identified two targets of miR-503, CCND2 and CCND3. Moreover, we measured increased plasmatic miR-503 in breast cancer patients after neoadjuvant chemotherapy, which could be partly due to increased miRNA secretion by endothelial cells. Taken together, our data are the first to reveal the involvement of the endothelium in the modulation of tumor development via the secretion of circulating miR-503 in response to chemotherapy treatment.  相似文献   

11.
The production and secretion of extracellular vesicles (EVs) are common features of cells (including various normal cells, neoplastic cell lines as well as bacteria) that span all domains of life. Tumor-derived exosomes are enriched with kinds of tumorigenesis mediators which are derived from the cytoplasm of cancer cells and fully reflect the tumor conditions. Indeed, the major topics and challenges on current oncological research are the identification of tumorigenic and metastatic molecules in tumor-cell-derived exosomes as well as elucidating the pathways that guarantee these components to be included in exosomes. The bacterial EVs have also been implicated in the pathogenesis of gastrointestinal (GI) tumors and chronic inflammatory diseases; however, the possible function of outer membrane vesicles (OMVs) in tumorigenesis remains largely underestimated. We suggest that EVs from both eukaryotic cells and different microbes in GI tract act as regulators of intracellular and cross-species communication, thus particularly facilitate tumor cell survival and multi-drug resistance. Therefore, our review introduces comprehensive knowledge on the promising role of EVs (mainly exosomes and OMVs) production of GI cancer development and gut microbiome, as well as its roles in developing novel therapeutic strategies.  相似文献   

12.
Exosomes are excretory vesicles that can deliver a variety of bioactive cargo molecules to the extracellular environment. Accumulating evidence demonstrates exosome participation in intercellular communication, immune response, inflammatory response and they even play an essential role in affecting the tumor immune microenvironment. The role of exosomes in the immune microenvironment of ovarian cancer is mainly divided into suppression and stimulation. On one hand exosomes can stimulate the innate and adaptive immune systems by activating dendritic cells (DCs), natural killer cells and T cells, allowing these immune cells exert an antitumorigenic effect. On the other hand, ovarian cancer-derived exosomes initiate cross-talk with immunosuppressive effector cells, which subsequently cause immune evasion; one of the hallmarks of cancer. Exosomes induce the polarization of macrophages in M2 phenotype and induce apoptosis of lymphocytes and DCs. Exosomes further activate additional immunosuppressive effector cells (myeloid-derived suppressor cells and regulatory T cells) that induce fibroblasts to differentiate into cancer-associated fibroblasts. Exosomes also induce the tumorigenicity of mesenchymal stem cells to exert additional immune suppression. Furthermore, besides mediating the intercellular communication, exosomes carry microRNAs (miRNAs), proteins and lipids to the tumor microenvironment, which collectively promotes ovarian cancer cells to proliferate, invade and tumors to metastasize. Studying proteins, lipids and miRNAs carried by exosomes could potentially be used as an early diagnostic marker of ovarian cancer for designing treatment strategies.  相似文献   

13.
Emerging evidence has shown that dynamic crosstalk among cells in the tumor microenvironment modulates the progression and chemotherapeutic responses of cancer. Extracellular vesicles comprise a crucial form of intracellular communication through horizontal transfer of bioactive molecules, including long non–coding RNA (lncRNA), to neighboring cells. Three main types of extracellular vesicles are exosomes, microvesicles and apoptotic bodies, exhibiting a wide range of sizes and different biogenesis. Over the last decade, dysregulation of extracellular vesicle lncRNA has been revealed to remodel the tumor microenvironment and induce aggressive phenotypes of tumor cells, thereby facilitating tumor growth and development. This review will focus on extracellular vesicle lncRNA‐mediated crosstalk between tumor cells and recipient cells, including tumor cells as well as stromal cells in the tumor microenvironment, and overview the mechanisms by which lncRNA are selectively sorted into extracellular vesicles, which may pave the way for their clinical application in cancer diagnosis and treatment.  相似文献   

14.
Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.  相似文献   

15.
16.
There is an urgent need to develop new combination therapies beyond existing surgery, radio‐ and chemo‐therapy, perhaps initially combining chemotherapy with the targeting specificities of immunotherapy. For this, strategies to limit inflammation and immunosuppression and evasion in the tumour microenvironment are also needed. To devise effective new immunotherapies we must first understand tumour immunology, including the roles of T cells, macrophages, myeloid suppressor cells and of exosomes and microvesicles (EMVs) in promoting angiogenesis, tumour growth, drug resistance and metastasis. One promising cancer immunotherapy discussed uses cationic liposomes carrying tumour RNA (RNA‐lipoplexes) to provoke a strong anti‐viral‐like (cytotoxic CD8+) anti‐tumour immune response. Mesenchymal stem cell‐derived EMVs, with their capacity to migrate towards inflammatory areas including solid tumours, have also been used. As tumour EMVs clearly exacerbate the tumour microenvironment, another therapy option could involve EMV removal. Affinity‐based methods to deplete EMVs, including an immunodepletion, antibody‐based affinity substrate, are therefore considered. Finally EMV and exosome‐mimetic nanovesicles (NVs) delivery of siRNA or chemotherapeutic drugs that target tumours using peptide ligands for cognate receptors on the tumour cells are discussed. We also touch upon the reversal of drug efflux in EMVs from cancer cells which can sensitize cells to chemotherapy. The use of immunotherapy in combination with the advent of EMVs provides potent therapies to various cancers.  相似文献   

17.
It is well known that tumor microenvironment plays a vital role in drug resistance and cell adhesion‐mediated drug resistance (CAM‐DR), a form of de novo drug resistance. In our previous study, we reported that MGr1‐Ag/37LRP ligation‐induced adhesion participated in protecting gastric cancer cells from a number of apoptotic stimuli caused by chemotherapeutic drugs. Further study suggested that MGr1‐Ag could prompt CAM‐DR through interaction with laminin. However, the MGr1‐Ag‐initiated intracellular signal transduction pathway is still unknown. In this study, our experimental results showed that gastric cancer MDR cell lines mediated CAM‐DR through upregulation of Bcl‐2 by MGr1‐Ag interaction with laminin. Further study found that, as a receptor of ECM components, MGr1‐Ag/37LRP may activate the downstream signal pathway PI3K/AKT and MAPK/ERK through interaction with phosphorylated FAK. Moreover, the sensitivity to chemotherapeutic drugs could be significantly enhanced by inhibiting MGr1‐Ag/37LRP expression through mAbs, siRNA, and antisense oligonucleotide. According to these results, we concluded that the FAK/PI3K and MAPK signal pathway plays an important role in MGr1‐Ag‐mediated CAM‐DR in gastric cancer. MGr1‐Ag/37LRP might be a potential effective reversal target to MDR in gastric cancer.  相似文献   

18.
Tumor-derived extracellular vesicles (EVs) have a pleiotropic role in cancer, interacting with target cells of the tumor microenvironment, such as fibroblasts, immune and endothelial cells. EVs can modulate tumor progression, angiogenic switch, metastasis, and immune escape. These vesicles are nano-shuttles containing a wide spectrum of miRNAs that contribute to tumor progression. MiRNAs contained in extracellular vesicles (EV-miRNAs) are disseminated in the extracellular space and are able to influence the expression of target genes with either tumor suppressor or oncogenic functions, depending on both parental and target cells. Metastatic cancer cells can balance their oncogenic potential by expressing miRNAs with oncogenic function, whilst exporting miRNAs with tumor suppressor roles out of the cells. Importantly, treatment of cancer cells with specific natural and chemical compounds could induce the elimination of miRNAs with oncogenic function, thereby reducing their aggressiveness. In this review, we discuss the mechanisms by which EV-miRNAs, acting as miRNAs with oncogenic or tumor suppressor functions, could contribute to cancer progression.  相似文献   

19.
Exosomes are nano‐scale messengers loaded with bio‐molecular cargo of RNA, DNA, and Proteins. As a master regulator of cellular signaling, stem cell (both normal, and cancer stem cells) secreted exosome orchestrate various autocrine and paracrine functions which alter tumor micro‐environment, growth and progression. Exosomes secreted by one of the two important stem cell phenotypes in cancers a) Mesenchymal stem cells, and b) Cancer stem cells not only promote cancerous growth but also impart therapy resistance in cancer cells. In tumors, normal or mesenchymal stem cell (MSCs) derived exosomes (MSC‐exo) modulate tumor hallmarks by delivering unique miRNA species to neighboring cells and help in tumor progression. Apart from regulating tumor cell fate, MSC‐exo are also capable of inducing physiological processes, for example, angiogenesis, metastasis and so forth. Similarly, cancer stem cells (CSCs) derived exosomes (CSC‐exo) contain stemness‐specific proteins, self‐renewal promoting regulatory miRNAs, and survival factors. CSC‐exo specific cargo maintains tumor heterogeneity and alters tumor progression. In this review we critically discuss the importance of stem cell specific exosomes in tumor cell signaling pathways with their role in tumor biology.  相似文献   

20.
肿瘤相关成纤维细胞(CAFs)是肿瘤微环境(TME)中最主要的细胞组分之一,在肿瘤发生、进展中发挥重要作用。微小RNA(miRNAs)参与CAFs的转化与代谢重编程,并可调控CAFs 的干性及其介导的肿瘤细胞增殖、侵袭和化疗耐药等机制,在CAFs 的形成和CAFs 对肿瘤的促进作用中发挥重要功能;而CAFs 释放的miRNAs 可作为肿瘤的诊断、预后及用药选择的参考指标。因此探索miRNAs 在肿瘤细胞与CAFs 相互作用中的功能,揭示其作用机制,对于理解肿瘤的发生和发展具有重要意义;同时也可为新的肿瘤治疗策略提供研究方向。本文将对miRNAs在CAFs的形成及CAFs对肿瘤细胞调控中的作用加以介绍  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号