首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gabbroic and hornblendite xenoliths from La Palma, Tenerife and Lanzarote fall into three main groups based on petrography and chemistry. One group (comprising all xenoliths from Lanzarote and some from La Palma) consists of highly deformed orthopyroxene-bearing gabbroic rocks that show a strong affinity to N-MORB and oceanic gabbro cumulates in terms of mineral chemistry and REE relations. However, they show mild enrichment in the most incompatible elements (particularly Rb+Ba±K) relative to intermediate and heavy REE, and their Sr–Nd isotope ratios fall within or close to the N-MORB field. The second group (60% of the xenoliths from La Palma) are gabbroic cumulates with zoned clinopyroxenes (Ti–Al-poor cores, Ti–Al-rich rims) and reaction rims of hornblende, biotite and clinopyroxene on other phases. Their trace-element and Sr–Nd isotope relations are in general transitional between N-MORB cumulates and Canary Islands alkali basalts, but they show strong enrichment in Rb, Ba and K relative to other strongly incompatible elements. The third group (comprising some xenoliths from La Palma and all those from Tenerife) are undeformed gabbroic and hornblendite rocks in which hornblende and biotite appear to belong to the primary assemblage. These rocks show strong affinities to Canary Islands alkali basaltic magmas with respect to mineral, trace-element, and Sr–Nd isotope chemistry. The first two groups are interpreted as fragments of old oceanic crust which have been mildly to strongly metasomatized through reactions with Canary Islands alkaline magmas. The reaction process is a combination of enrichment in elements compatible with biotite (and hornblende), and simple mixing between N-MORB cumulates and trapped alkaline magmas. The third group represents intrusions/cumulates formed from mafic alkaline Canary Islands magmas. Modeling indicates that locally up to 50% new material has been added to the old oceanic crust through reactions with ocean island basalts. Reactions and formation of cumulates do not represent simple underplating at the mantle/crust boundary, but have taken place within the pre-existing oceanic crust, and are likely to have significantly thickened the old oceanic crust.  相似文献   

2.
Newly discovered olivine phlogopite lamproite dikes intrude Jurassic siliciclastic strata in the Green River Desert subregion of the western Colorado Plateau tectonic province in southeastern Utah. The dikes yield an age of 22 Ma both from 40Ar/39Ar step-heating of phlogopite and from isochron modeling of laser-fused sanidine. This age is similar to those of mica-rich minettes and melanephelinites of the Wasatch Plateau about 125 km northwest and within the age range of the Navajo potassic volcanic field about 150 km to the southeast. The dikes intruded a pre-existing, northwest-oriented fracture system containing previously introduced bitumen, indicating that some regional lineaments of this trend are Early Miocene or older. The dikes are highly LREE-enriched, and display lamproite-specific REE ratios and phlogopite and sanidine compositions. Incompatible element and radiogenic isotope (Nd–Sr–Pb) ratios suggest that lithospheric source material modified by ancient subduction processes, together with younger asthenospheric source components, produced the melt. Timing of the intrusion coincides with the transition from Early–Middle Cenozoic, calc-alkaline plutonism to the dominantly mafic, Basin and Range type volcanism of the Late Cenozoic. While the lamproite occurrence indicates thermal input from the mantle, model non-uniqueness for both magma source depths and geophysical structure prevents quantitative comparison of Early Miocene with present-day lithospheric thickness.  相似文献   

3.
During the Oligocene–Middle Miocene period widespread magmatic activity developed in Western Anatolia, following the continental collision between the Sakarya continent and the Tauride–Anatolide platform. This produced both intrusive and extrusive rocks, which appear to be associated in space and time, as exemplified from the Bayramiç area. In the Bayramiç area, the magmatic activity started with the intrusion of the Evciler granite, and the coeval lower volcanic association. This was followed by the development of the upper volcanic association. These rock groups form collectively the Bayramiç magmatic complex, which was generated under an on-going north–south compressional regime. The Bayramiç magmatic complex has a subalkaline composition, displaying a calcalkaline trend. Trace elements and REE contents resemble to island-arc and collision-related magmas. According to the isotope values the Bayramiç magmatic complex was derived from the magmas of lithospheric mantle origin, which were later contaminated, while passing through the thick continental crust, in a post-collisional tectonic setting, during the Oligocene–Early Miocene period. The latest product of the magmatism is the Late Miocene–Pliocene basalt lavas. Their geochemical properties are clearly different from the Oligocene–Early Miocene magmatic rocks. The basalts were generated when the north–south compression gave way to the north–south extensional regime.  相似文献   

4.
Abundances of major and trace elements were determined for the Tertiary volcanic rocks from SW Hokkaido. The Late Miocene to Pliocene volcanic rocks of this region show geochemical features similar to those of the Quaternary rocks, that is, K/Si, Th/Si and LREE/HREE ratios increasing across the arc, east to west, from the Pacific to the Japan Sea side. In contrast, the Early Miocene volcanic rocks, which are geographically restricted to the Japan Sea coast, are distinct from all later volcanics and show “within-plate” characteristics — in particular, high concentrations of HFS elements. The Quaternary basalts have low Hf/Yb ratios and Hf contents, whereas the Early Miocene basalts are high in Hf/Yb and Hf, similar to Hawaiian alkali basalts. The compositional variation with time may result from the progressive depletion of incompatible HFS elements in the mantle source. Th/Yb ratios increase from Early Miocene to Quaternary, possibly reflecting increase in the LIL element contribution to the mantle source during that time.  相似文献   

5.
Abstract Middle Miocene basalts and basaltic andesites of the Matsue Formation outcrop within a 5 km radius of Matsue city in eastern Shimane Prefecture. Despite their limited outcrop and age (11.0 ± 1.5 Ma), they show a wide range in 87Sr-86Sr(0.70370–0.70593), 143Nd-144Nd(0.512904–0.512471) and large ion lithophile element (LILE) contents, but a relatively narrow range for some high field strength elements (HFSE) such as Nb and Ti. These basalts and andesites can be divided into three groups based on petrography, major element, trace element and isotope chemistry. Although one group has undergone some fractional crystallization, isotope chemistry precludes linkage of the groups by a closed-system process. Crustal contamination can explain isotope chemistry, but is not consistent with trace element variations. The most satisfactory model is eruption of two compositionally distinct magmas, with limited magma mixing and fractional crystallization. Published experimental work shows that one end-member resulted from shallow melting of upwelling mantle at ∼25 km. The simultaneous eruption of the other end member magma in the same area points towards a heterogeneous mantle. The isotopic composition of Matsue Formation basalts and andesites covers the entire range of Late Miocene mafic volcanic rocks of southwest Japan. Such gross heterogeneity developed on a local scale has implications for models that deal with regional chemical variations of mafic volcanic rocks in southwest Honshu.  相似文献   

6.
Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites.87Sr/86Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and143Nd/144Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obvious crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series.The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration.  相似文献   

7.
A NNW-trending belt of alkaline mafic volcanic fields parallels the Gulf of Mexico from the U.S. border southward to Veracruz state, in eastern Mexico. Previous studies grouped this volcanism into the so-called “Eastern Alkaline Province” (EAP) and suggested that it resulted from Gulf-parallel extensional faulting migrating from north to south from Oligocene to Present. On the basis of new geologic studies, forty-nine unspiked K–Ar and two 40Ar–39Ar ages, we propose a new geodynamic model for the volcanism along the southwestern Gulf of Mexico.We studied in detail four of the six recognized fields of mafic alkaline volcanism in Veracruz state: 1) The lavas flows of Tlanchinol area (7.3–5.7 Ma), 2) the Alamo monogenetic field and Sierra de Tantima (7.6–6.6 Ma), 3) the Poza Rica and Metlatoyuca lava flows (1.6–1.3 Ma) and 4) the Chiconquiaco–Palma Sola area (6.9–3.2 Ma). Other two mafic volcanic fields may represent the continuation of alkaline volcanism to the southeast: the Middle Miocene lavas at Anegada High, offshore port of Veracruz, and the Middle to Late Miocene volcanism at the Los Tuxtlas.The existence of major Neogene extensional faults parallel to the Gulf of Mexico (i.e., ∼N–S to NNW–SSE) proposed in previous works was not confirmed by our geological studies. Elongation of volcanic necks, vent alignment, and faults mapped by subsurface data trend dominantly NE to ENE and NW to NNW. These directions are parallel to transform and normal faults that formed during the Late Jurassic opening of the Gulf of Mexico. Ascent of mafic magmas was likely facilitated and controlled by the existence of these pre-existing basement structures.Coupled with previous studies, our data demonstrate the occurrence of three magmatic episodes in Veracruz: 1) A Middle Miocene (∼15–11 Ma) episode in southern Veracruz (Palma Sola, Anegada, and Los Tuxtlas); 2) A Late Miocene to Early Pliocene (∼7.5–3 Ma) pulse of mafic alkaline volcanism throughout the study region; and 3) A Late Pliocene to Quaternary transitional to calc–alkaline volcanism in southern Veracruz (Palma Sola, Los Tuxtlas). Whereas the first and third episodes may be considered part of the subduction-related Trans-Mexican Volcanic Belt, the second pulse of mafic alkaline volcanism has a more complex origin. The absence of significant extensional faulting precludes a rift origin. We favor a model in which a transient thermal anomaly and melting of the mantle was triggered by the tearing and detachment of part of the subducted slab.  相似文献   

8.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

9.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

10.
A broad zone of dominantly subaerial silicic volcanism associated with regional extensional faulting developed in southern South America during the Middle Jurassic, contemporaneously with the initiation of plutonism along the present Pacific continental margin. Stratigraphic variations observed in cross sections through the silicic Jurassic volcanics along the Pacific margin of southernmost South America indicate that this region of the rift zone developed as volcanism continued during faulting, subsidence and marine innundation. A deep, fault-bounded submarine trough formed near the Pacific margin of the southern part of the volcano-tectonic rift zone during the Late Jurassic. Tholeiitic magma intruded within the trough formed the mafic portion of the floor of this down-faulted basin. During the Early Cretaceous this basin separated an active calc-alkaline volcanic arc, founded on a sliver of continental crust, from the then volcanically quiescent South American continent. Geochemical data suggest that the Jurassic silicic volcanics along the Pacific margin of the volcano-tectonic rift zone were derived by crustal anatexis. Mafic lavas and sills which occur within the silicic volcanics have geochemical affinities with both the tholeiitic basalts forming the ophiolitic lenses which are the remnants of the mafic part of the back-arc basin floor, and also the calc-alkaline rocks of the adjacent Patagonian batholith and their flanking lavas which represent the eroded late Mesozoic calc-alkaline volcanic arc. The source of these tholeiitic and calc-alkaline igneous rocks was partially melted upper mantle material. The igneous and tectonic processes responsible for the development of the volcano-tectonic rift zone and the subsequent back-arc basin are attributed to diapirism in the upper mantle beneath southern South America. The tectonic setting and sequence of igneous and tectonic events suggest that diapirism may have been initiated in response to subduction.  相似文献   

11.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

12.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

13.
The Chichontepec volcano is a Plio-Pleistocene composite volcano that erupted lavas ranging from high-alumina basalts to dacites. It experienced a caldera-forming paroxysmal eruption during the early Pleistocene. Pre-caldera lavas are mildly tholeiitic and they evolved mainly by low pressure crystal fractionation, notwithstanding the fact that most mafic lavas (low-MgO high-alumina basalts) retain traces of polybaric evolution. Conversely, post-caldera lavas, which are mainly pyroxene andesites, are clearly calc-alkaline, having evolved by open-system crystal fractionation. Sr–Nd isotopic data and trace elements characteristics indicate that the same mantle source was involved in the petrogenesis of these series. Modelling the AFC process showed that it did not play any role in the petrogenesis of these rocks; a crystal fractionation model is considered to be more relevant. A slight variation in the fractionating assemblage could have caused the transition from an early mildly tholeiitic trend to a late calc-alkaline one. Mineralogical evidence, mass-balance calculations and elemental chemistry support this hypothesis, assuming that the greater amount of pyroxene on the liquidus is at the expense of plagioclase; this would have prevented the trend in iron enrichment.  相似文献   

14.
This paper presents systematic studies on the C—O and Sr—Nd isotopic compositions for Cretaceous Badou carbonatites, Fangcheng basalts, and Jiaodong lamprophyres and Paleozoic Mengyin kimberlites in Shandong Province, China. Paleozoic kimberlites have normal and uniform C—O isotopic compositions with δ13C and δ18O in the range of −4.8‰—−7.6‰ and +9.9‰—+13.2‰, respectively. However, Cretaceous three different types of mantlederived rocks have quite different C—O isotopic compositions, indicating that the mantle sources are probably partially contaminated with organic carbon-bearing crustal materials. These Cretaceous rocks show uniform and EMII-like Sr—Nd isotopic compositions and also indicate that the mantle sources were affected by recycled crustal materials. Comparative studies of C—O and Sr—Nd isotopes reveal that the lithospheric mantle beneath the eastern North China Craton had different isotope characteristics in the Paleozoic, the early Cretaceous, and the Tertiary time. This demonstrates that the lithospheric mantle beneath the region underwent at least twice reconstructions since the Paleozoic. Available data imply that the first reconstruction mainly happened during the Triassic-Jurassic time with gradual changes and the second in the Cretaceous with abrupt changes. Results also show that the early Cretaceous (especially at 120-130 Ma) was perhaps the key period leading to the dramatic change of the Mesozoic geodynamics on the eastern North China Craton.  相似文献   

15.
The currently active off-rift central volcano Öræfajökull in south-east Iceland sits unconformably on much older (10–12 Ma) and eroded crust. The composition of recent volcanics ranges from basalt to rhyolite, but the series is more sodic alkaline than the common rift zone tholeiitic suites. In this study we present Sr, Nd, Pb and O isotopic data for a suite of Öræfajökull samples. The complete suite shows typical mantle values for oxygen isotopes. The 87Sr/86Sr ratios (average of 15 SAMPLES=0.703702) of the modern Öræfajökull rocks (basalts as well as rhyolites) are much higher than observed so far for any other Icelandic rocks. The 143Nd/144Nd ratios (average=0.512947; n=15) are lower than for rift rocks, but similar to rocks of the off-rift Snæfellsnes volcanic zone. Furthermore, the Öræfajökull rocks are enriched in the 207Pb/204Pb and 208Pb/204Pb isotope ratios compared to Icelandic rift basalts. The enriched nature of the suite indicates that Öræfajökull samples a source component that has characteristics common with EM2 type mantle. Furthermore, it is concluded that the silicic rocks of Öræfajökull formed by fractional crystallization from mafic melts rather than by partial melting of older crust.  相似文献   

16.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

17.
New geochemical and 40Ar/39Ar age data are presented from the Neogene volcanic units of the Karaburun Peninsula, the westernmost part of Western Anatolia. The volcanic rocks in the region are associated with Neogene lacustrine deposition and are characterized by (1) olivine-bearing basaltic-andesites to shoshonites (Karaburun volcanics), high-K calc-alkaline andesites, dacites and latites (Yaylaköy, Arma?anda? and Kocada? volcanics) of ~ 16–18 Ma, and (2) mildly-alkaline basalts (Ovac?k basalt) and rhyolites (Urla volcanics) of ~ 11–12 Ma. The first group of rocks is enriched in LILE and LREE with respect to the HREE and HFSE on N-MORB-normalised REE and multi-element spider diagrams. They are comparable geochemically with volcanic rocks in the surrounding regions such as Chios Island and other localities in Western Anatolia. The Ovac?k basalt is geochemically similar to the first stage early–middle Miocene volcanic rocks but differs from NW Anatolian late Miocene alkali basalts.  相似文献   

18.
Major- and rare-earth-element (REE) concentrations and UThPb, SmNd, and RbSr isotope systematics are reported for Cenozoic volcanic rocks from northeastern and eastern China. These volcanic rocks, characteristically lacking the calc-alkaline suite of orogenic belts, were emplaced in a rift system which formed in response to the subduction of the western Pacific plate beneath the eastern Asiatic continental margin. The rocks sampled range from basanite and alkali olivine basalt, through olivine tholeiite and quartz tholeiite, to potassic basalts, alkali trachytes, pantellerite, and limburgite. These rock suites represent the volcanic centers of Datong, Hanobar, Kuandian, Changbaishan and Wudalianchi in northeastern China, and Mingxi in the Fujian Province of eastern China.The major-element and REE geochemistry is characteristic of each volcanic suite broadly evolving through cogenetic magmatic processes. Some of the outstanding features of the isotopic correlation arrays are as follows: (1) NdSr shows an anticorrelation within the field of ocean island basalts, extending from the MORB end-member to an enriched, time-averaged high Rb/Sr and Nd/Sr end-member (EM1), (2) SrPb also shows an anticorrelation, similar to that of Hawaiian and walvis Ridge basalts, (3) NdPb shows a positive correlation, and (4) the 207Pb/204Pb vs 206Pb/204Pb plot shows linear arrays parallel to the general trend (NHRL) for MORB on both sides of the geochron, although in the 208Pb/204Pb vs 206Pb/204Pb plot the linear array is significantly displaced above the NHRL in a pattern similar to that of the oceanic island basalts that show the Dupal signatures. In all isotope correlation patterns, the data arrays define two different mantle components—a MORB-like component and an enriched mantle component. The isotopic data presented here clearly demonstrate the existence of Dupal compositions in the sources of the continental volcanic rocks of eastern China. We suggest that the subcontinental mantle beneath eastern China served as the reservoir for the EMI component, and that the MORB component was either introduced by subduction of the Kula-Pacific Ridge beneath the Asiatic plate in the Late Cretaceous, as proposed by Uyeda and Miyashiro, or by upwellings in the subcontinental asthenosphere due to subduction.  相似文献   

19.
The Hasan Dagi volcano is one of the two large Plio-Quaternary volcanoes in Cappadocia (Central Anatolia, Turkey). Three stages of edifice construction have been identified for this volcano: Paleovolcano, Mesovolcano and Neovolcano. Most samples from Hasan Dagi volcano are calc-alkaline and define an almost complete trend from basaltic andesite to rhyolite. However, the more recent (Neovolcano) mafic samples are alkaline basalts. The mineralogical and geochemical characteristics of the oldest lavas (Keçikalesi (13 Ma) and Paleo-Hasan Dagi (7 Ma)) are significantly different from those of the younger lavas (Meso- and Neo-Hasan Dagi (<1 Ma)). Calcic plagioclase and pigeonite are typically observed in these older lavas. The Paleovolcano basalts are depleted in alkalis and display a tholeiitic tendency whereas the differentiated lavas are depleted in Na2O but enriched in K2O compared to younger lavas. There is an evolution through time towards higher TiO2, Fe2O3*, MgO, Na2O and K2O and lower Al2O3 and SiO2 which is reflected in the basalt compositions. All the basalts display multi-element patterns typical of continental margin magmas with a significant enrichment in LILE (K, Rb, Ba and Th) and LREE and strong (Paleovolcano) to moderate (Meso- and Neovolcano) negative Nb, Zr and Ti anomalies. However, the younger basalts are the most enriched in incompatible elements, in agreement with their alkaline affinities and do not systematically display negative HFSE anomalies. REE data suggest an hydrous amphibole-bearing crystallization history for both Meso- and Neovolcano lavas. The distinction between the older and younger lavas is also apparent in trace element ratios such as Nb/Y, Ti/Y and Th/Y. These ratios indicate the role of a subducted component±crustal contamination in the genesis of the Hasan Dagi lavas, particularly for the oldest lavas (Keçikalesi and Paleo-Hasan Dagi). The decreasing influence of this component through time, over the last 6–7 m.y., has been accompanied by an increasing contribution of melt-enriched lithosphere. Although the range of variation of Sr, Nd and Pb isotopic ratios is small (0.70457–0.70515; 0.51262–0.51273; 18.80–18.94; 15.64–15.69; 38.87–39.10), it also reflects the evolution of the magma sources through time. Indeed, the youngest (Neovolcano) and most primitive basalts display significantly lower 87Sr/86Sr than the Paleo- and Mesovolcano basalts, whereas the Mesovolcano basalts display more radiogenic Pb than Paleovolcano samples. Magma mixing processes between initially heterogeneous and/or variably contaminated magmas may account for the genesis of the less differentiated and intermediate lavas (48–57% SiO2). Meso- and Neovolcano differentiated lavas (60–68% SiO2) are either derived from the analyzed basalts or from more primitive and more depleted magmas by fractional crystallization±some crustal contamination (AFC). Furthermore, the highly differentiated samples (72–75% SiO2) are not strongly contaminated. The strong calc-alkaline character of Hasan Dagi lavas, in the absence of contemporaneous subduction, must reflect the heritage of the early subduction of the Afro–Arabian plate under the Eurasian plate. The evolution towards alkaline compositions through time is clearly related to the development of extensional tectonics in Central Anatolia in the Late Miocene.  相似文献   

20.
This paper considers results from isotope-geochronological (K-Ar) studies of the products of Neogene-Quaternary volcanism in the Karacada? area, which is situated within the northern frontal part of the Arabian plate. It was found that magmatic activity has been evolving at this location for at least the last 11–10 Myr and was distinctly discrete in character. Three stages of volcanism have been identified: (I) Early or Miocene, ~11–6.7 Ma; (II) Middle or Pliocene-Early Quaternary, 4–1 Ma; and (III) Late or Late Quaternary, 0.4–0.1 Ma. The most recent manifestations of magmatic activity in the region date back to about 100000 years ago. An analysis of the spatial distribution of volcanic centers of different ages in the Karacada? neovolcanic area shows that the magmatism of that region involved a lateral migration of activity from northwest to southeast along a major regional tectonic fault. The migration was caused by the movement of local tension zones where the lithosphere was thinner and deep-seated mantle magmas were ascending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号