首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 859 毫秒
1.
李霄  都基众  张哲  王晓光  崔健  柴璐 《环境科学研究》2013,26(11):1162-1170
为研究有机组分在地下水中的运移规律及影响因素,并预测水质的破坏程度,利用数值模拟方法建立浑河中游区域特征有机污染组分1,2-DCA(1,2-二氯乙烷)的溶质运移模型,分析1,2-DCA在浑河中游地下水中的运移规律,并预测了其对地下水水质的影响. 细河与浑河中1,2-DCA的补给浓度(以ρ计)分别为4.50和6.40μg/L,预测期为10a,在运移模型中考虑弥散、吸附、降解作用的影响. 模拟结果显示,预测期内1,2-DCA在细河污染区的最大影响面积为1.80km2,峰值浓度(以ρ计)为3.50μg/L,污染物向北西方向运移;在浑河污染区的最大影响面积为3.78km2,峰值浓度为5.00μg/L,污染物向西南方向运移,表明污染物对地下水水质影响程度较低. 预测初期的200d内,吸附及生物降解的共同作用使细河、浑河污染晕中心的ρ(1,2-DCA)分别下降了0.12、0.10μg/L;随后,对流-弥散作用成为溶质运移的主要驱动力,并且使1,2-DCA的污染程度持续增强;黏土对1,2-DCA的运移具有阻滞作用,1,2-DCA在细河污染晕的扩散幅度略低于浑河.   相似文献   

2.
对于地下水中的1,2-DCA(1,2-dichloroethane,1,2-二氯乙烷),表面活性剂强化抽出处理是一种十分有效的修复技术.为明确表面活性剂浓度、介质粒径及抽出速率等因素对1,2-DCA修复效果的影响,选取石英砂作为多孔介质,1,2-DCA作为DNAPLs(dense nonaqueous phase liquids,重质非水相液体)代表,SDBS(sodium dodecylbenzenesulfonate,十二烷基苯磺酸钠)作为表面活性剂代表,在二维可视化砂箱中采用染色示踪结合图像分析技术对汇于凹陷弱透水层上的1,2-DCA开展SDBS强化抽出处理试验.结果表明:SDBS对1,2-DCA具有显著增溶作用.4组纯水试验的抽出液中ρ(1,2-DCA)最大值为219.15 mg/L,加入1倍CMC和3倍CMC(CMC为临界胶束浓度)的SDBS后,ρ(1,2-DCA)最大值分别升至650.95和800.44 mg/L.1,2-DCA去除总量随ρ(SDBS)的升高而增加,其中加入3倍CMC的SDBS条件下1,2-DCA的去除总量是纯水试验条件下的1.44~2.06倍.细粒径中的毛细力比粗粒径中更大,并且1,2-DCA的最大污染面积是粗粒径条件下的2.18~3.14倍,1,2-DCA与SDBS溶液接触面积的增大有利于提高SDBS对1,2-DCA的去除效果.同时增加抽出-回注流量可以扩大1,2-DCA与SDBS溶液的接触面积,提高1,2-DCA向溶液中的传质效率,进而提高1,2-DCA的去除效果.研究显示,SDBS强化抽出处理技术能够显著提高地下水中1,2-DCA的去除总量和去除效率.   相似文献   

3.
厌氧条件下有机氯代烃污染物的氧化降解   总被引:4,自引:0,他引:4  
根据土柱实验,对3种弱还原条件下氯乙烷和氯乙烯类化合物的氧化降解进行了研究.结果显示,在硝酸盐和氧化锰存在条件下,1,2-二氯乙烷(1,2-DCA)和一氯乙烯(VC)可发生氧化降解,其中,1,2-DCA转化速率在反硝化和锰还原过程中分别为1.18/h和0.54/h,VC转化速率分别为0.29/h和0.15/h.在Fe(OH)3存在条件下,VC无明显降解,1,2-DCA的降解亦受到抑制.其它有机氯代烃,如1,1,1-三氯乙烷、三氯乙烯、及二氯乙烯异构体等,在3种氧化还原条件下均未发生降  相似文献   

4.
通过实验定量分析了包气带砂层中影响垃圾渗滤液污染物自然衰减的吸附作用和生物降解作用。通过静态吸附实验计算得到砂层对COD和NH4+的理论最大吸附量为52.36和35.34 mg/kg。在生物降解作用研究中,确定HgCl2为生物作用抑制剂,最佳抑制浓度为10 mg/L。通过模拟柱对比得出包气带砂层中,生物降解是垃圾渗滤液污染物自然衰减的主要机制。生物作用和自然衰减条件下,垃圾渗滤液中COD在包气带砂层中的一级衰减动力学方程分别为:ρ(COD)=642221e-0.0017t和ρ(COD)=642221e-0.0021t。  相似文献   

5.
为筛选适宜的地下水中1,2-DCA(1,2-二氯乙烷)污染的修复方法,本文开展原位修复包括化学氧化清除技术、监测自然衰减技术及其集成技术的有效性研究。首先通过室内实验,研究高铁酸钾和过氧化氢这两种不同氧化剂对1,2-DCA化学清除的效率以及清除过程中对地下水化学环境的影响。结果表明,高铁酸钾和过氧化氢均能有效的进行化学清除工作,且在60 d后对1,2-DCA的去除率都超过了95%。在反应最佳作用时间内,菌落总数会急速下降,随着时间推移和氧化剂的消耗,菌落总数重新大幅度的回升,这表明即使在化学氧化清除效果减弱之后,依旧可以进行自然降解修复。在此基础上,利用野外水文地质资料与水化学监测资料,建立地下水污染修复数值模拟模型,并通过数值模拟结果分析评价监测自然衰减、化学氧化清除和化学氧化-自然衰减三种不同修复技术的可行性及效果差异,为场地地下水有机污染修复技术的筛选提供不可或缺的依据。  相似文献   

6.
针对地下水1,2-二氯乙烷(1,2-DCA)污染的修复问题,通过在室内构建受1,2-DCA污染的不同介质条件下的水土固液柱体,应用4种典型的氧化剂进行室内静态氧化修复批实验,分析各氧化剂在不同污染物浓度和不同砂土粒径环境下对砂土固液相中1,2-DCA的修复效果,同时对原位氧化与自然衰减结合的修复方式进行可行性探讨。实验结果表明:所选的4种氧化剂均可有效去除1,2-DCA,但去除率略有不同。污染物浓度越高,反应越强烈;沙土粒径越小,对污染物吸附效果越强。另外,在氧化反应期间,水中菌落总数会急速下降,但随着时间推移和氧化剂的减少,菌落总数回升,菌落数量回升速率与氧化剂剂量有关。氧化剂剂量仍是原位化学氧化与监测自然衰减集成修复方法的关键指标。  相似文献   

7.
1,2-二氯乙烷(1,2-DCA)是一类地下水中常见的难降解饱和氯代烃,为探究厌氧条件下零价铁(ZVI)协同生物作用对其降解规律,采集北京市某氯代烃污染场地地下水及含水层土壤,利用微宇宙实验体系,通过添加由微米级零价铁(mZVI)、生物碳源及营养组成的复合药剂,考察不同条件下1,2-DCA的去除效果,并对地下水理化参数的变化进行长期监测.结果表明:复合药剂添加量为3%时,恒温、避光、匀速振荡的反应条件下,15 d内地下水中的1,2-DCA即可降至低于检出限.中性pH及SO_4~(2-)的存在更有利于1,2-DCA的脱氯降解. 30 d后仅检测到体系中明显的乙烯产生,推测双脱氯消除为1,2-DCA在该体系内的主要降解途径.此外,复合药剂加入后,地下水可长时间维持较低的氧化还原电位(-100~-300 m V)、溶解氧(0. 5 mg·L~(-1))以及适宜的pH值(6. 5~7. 5),利于厌氧微生物活性的维持及脱氯反应的进行.  相似文献   

8.
电解催化还原-氯氧化无害化去除水中硝酸盐氮   总被引:2,自引:1,他引:1       下载免费PDF全文
基于对Pd-Me双金属催化还原的机理分析,提出了以NH4+-N为目标产物,Fe催化还原NO3--N的理论设想. 结合折点氯化技术,以Ti/Fe为阴极,以Ti/Ir-Ru为阳极,以NaCl为支持电解质组建无隔膜电解体系,开展了水中NO3--N去除的试验研究. 结果表明,利用电解催化还原-氯氧化法可将模拟水样中NO3--N转化为N2去除,其反应历程为阴极催化还原NO3--N生成NH4+-N,阳极电解氯氧化NH4+-N生成N2. 在ρ(Cl-)为500 mg/L,电流密度为12 mA/cm2,极板距离为9 mm,搅拌强度为450 r/min的试验条件下电解150 min,初始ρ(NO3--N)为50 mg/L的模拟水样出水ρ(TN)和ρ(NO3--N)可分别降至2.9和2.8 mg/L,去除率分别达到94.1%和94.3%,NH4+-N和NO2--N均未检出. 分析认为,阴极对NO3--N的催化还原机理为:Fe化学吸附氮氧化合物离子中的O形成固定的N—O键,电解产生的活性还原物质攻击N—O形成N—H新键.   相似文献   

9.
BTEX在地下环境中的自然衰减   总被引:4,自引:2,他引:2  
周睿  赵勇胜  任何军  董军  胡桂全  赵妍  花菲 《环境科学》2009,30(9):2804-2808
通过室内模拟柱实验研究了BTEX在地下环境中的自然衰减过程,发现BTEX通过以细砂为介质的模拟地下环境时确实发生了自然衰减,挥发和生物降解作用是其自然衰减的重要机制.以苯为例,其在水中的质量浓度为11.40 mg/L左右时,挥发和生物降解作用占自然衰减的比例分别是16.36%和4.91%;而甲苯浓度为3.30 mg/L左右时,两者所占比例分别是11.04%和41.50%.可见BTEX中各组分衰减规律不同.BTEX浓度越大,其挥发得也越快,挥发对自然衰减的作用越大.微生物降解作用对甲苯更有效,占自然衰减的41.50%,间、对二甲苯次之占8.49%,而苯和乙苯很难被降解.  相似文献   

10.
1,2-二氯乙烷(1,2-DCA)是一类地下水中常见的难降解饱和氯代烃,为探究厌氧条件下零价铁(ZVI)协同生物作用对其降解规律,采集北京市某氯代烃污染场地地下水及含水层土壤,利用微宇宙实验体系,通过添加由微米级零价铁(mZVI)、生物碳源及营养组成的复合药剂,考察不同条件下1,2-DCA的去除效果,并对地下水理化参数的变化进行长期监测。结果表明:复合药剂添加量为3%时,恒温、避光、匀速震荡的反应条件下,15d内地下水中的1,2-DCA即可降至低于检出限。中性pH及SO42-的存在更有利于1,2-DCA的脱氯降解。30d后仅检测到体系中明显的乙烯产生,推测双脱氯消除为1,2-DCA在该体系内的主要降解途径。此外,复合药剂加入后,地下水可长时间维持较低的氧化还原电位(-100~-300mV)、溶解氧(0.5mg·L-1)以及适宜的pH值(6.5~7.5),利于厌氧微生物活性的维持及脱氯反应的进行。  相似文献   

11.
含水层降解能力是石油类污染场地监控自然衰减需获取的重要参数.通过测定某石油污染场地地下水电子供体(苯系物、化学耗氧量)和电子受体/产物(DO、NO3-、Mn2+、Fe2+、SO42-和HCO3-)等地球化学指标,分析了电子供受体分布规律,确定了电子受体背景值,采用传统地球化学评估法,计算了所有单井降解能力;在此基础上,引入累积概率曲线法,更科学的评估了场地含水层降解能力,结合地下水更新能力,估算了污染物降解速率;同时,划分了含水层降解能力强弱区.结果显示:该场地单井降解能力为36.49~70.05mg/L,其累积概率拟合曲线符合F(x)=0.008e0.07x指数模型,以此评估含水层降解能力为57.83mg/L.以径流量132m3/d估算地下水更新能力,估算污染物降解速率为2790kg/a;强降解能力区位于下游源区,面积约为5100m2,占场地总面积的5.3%;地下水中硫酸盐、硝酸盐消耗严重,强化硫酸盐还原和反硝化作用可能是该场地管理修复的一个有效方法.  相似文献   

12.
为揭示地下水波动带中细菌群落结构特征及其与地下水环境相互作用关系,选取哈尔滨市第一水源地作为研究区,采集地下水样品以及波动带不同深度(0~5m非饱和带和6~50m饱和带)含水介质样品,分别用于水化学分析和16S rRNA细菌高通量测序,依托冗余分析定量表述地下水质参数与细菌群落相关性.水化学分析结果显示,研究区地下水主要污染物为Fe、Mn、NH4+和有机质,Fe、Mn超标与研究区特定地质背景有关,NH4+和有机质主要来源于人类活动.微生物分析结果显示,非饱和带和饱和带的细菌群落结构差异性显著,非饱和带细菌群落丰度和多样性显著高于饱和带,Proteobacteria、Bacteroidetes、Actinobacteria、Firmicutes和Acidobacteria为研究区优势门,在非饱和带和饱和带的累积相对丰度分别为82.89%和98.64%.冗余分析(RDA)结果显示,门水平上非饱和带中与水质演化强相关的细菌类群是Bacteroidetes、Proteobacteria、Actinobacteria、Verrucomicrobia,贡献率分别为15%、14.8%、8.9%和5.2%;饱和带中对地下水质演化起主要作用的类群为Bacteroidetes、Acidobacteria、Actinobacteria和Firmicutes,贡献率分别为38.4%、19.0%、10.8%和9.1%.属水平上非饱和带中的Pseudomonas和饱和带中的Flavobacterium对Fe、Mn、NH4+生物转化起主导作用.本研究为揭示地下水波动带中生物地球化学作用对地下水环境的影响提供了科学依据,对地下水污染修复具有重要的意义.  相似文献   

13.
采用室内土柱试验方法,研究了孔隙水流速对1,2-二氯乙烷(1,2-DCA)在饱和砂质土壤中运移行为的影响.借助CXTFIT模型,通过示踪剂(KBr)穿透试验,获取了土柱内部条件参数,包括弥散系数D和孔隙水流速v,以及可动水和不可动水的分配比例.应用示踪剂试验获取的参数,分别使用平衡模型和非平衡两点模型对1,2-DCA在不同孔隙水流速下的穿透曲线进行了拟合.结果表明,平衡模型不能很好地模拟本文试验条件下1,2-DCA的运移,而非平衡两点模型拟合精度较高.试验条件下,流速对1,2-DCA运移影响显著.孔隙水流速较高时穿透时间较短,穿透曲线峰值更高.土壤对1,2-DCA的吸附作用是影响穿透特征的主要因素,高流速条件下,吸附作用的影响较小.  相似文献   

14.
As a remedial option, the natural attenuation capacity of a petroleum contaminated groundwater at a military facility was examined. Hydrogeological conditions, such as high water level, permeable uppermost layer and frequent heavy rainfall, were favorable to natural attenuation at this site. The changes in the concentrations of electron acceptors and donors, as well as the relevant hydrochemical conditions, indicated the occurrence of aerobic respiration, denitrification, iron reduction, manganese reduction and sulfate reduction. The calculated BTEX expressed biodegradation capacity ranged between 20.52 and 33.67 mg/L, which appeared effective for the reduction of the contaminants levels. The contribution of each electron accepting process to the total biodegradation was in the order: denitrification > iron reduction > sulfate reduction > aerobic respiration > manganese reduction. The BTEX and benzene point attenuation rates were 0.0058-0.0064 and 0.0005-0.0032 day-1, respectively, and the remediation time was 0.7-1.2 and 2.5-30 years, respectively. The BTEX and benzene bulk attenuation rates were 8.69 × 10-4 and 1.05 × 10-3 day-1, respectively, and the remediation times for BTEX and benzene were 7.2 and 17.5 years, respectively. However, most of the natural attenuation occurring in this site can be attributed to dilution and dispersion. Consequently, the biodegradation and natural attenuation capacities were good enough to lower the contaminants levels, but their rates appeared to be insufficient to reach the remediation goal within a reasonable time frame. Therefore, some active remedial measures would be required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号