首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
以重庆缙云山亚热带针阔混交林为研究区,研究了土壤呼吸及其Q10(温度敏感性系数,指温度增加10℃所造成的呼吸速率改变的商)的时间变异特征,并深入分析二者受土壤温度、湿度变化的影响. 2011年4—12月采用LI-8100二氧化碳通量测量系统观测选取样地的RS (土壤呼吸速率)、土壤5cm深处的T5(土壤温度)和W5(土壤湿度),分析RS与Q10的变化规律;同时利用单一和二元混合模型探讨T5和W5对RS、Q10的影响. 结果表明:①在观测期内RS和T5月均值均呈单峰曲线变化;RS的变化范围在(1.38±0.15)~(3.94±0.21)μmol/(m2·s)之间,T5的变化范围在(9.28±0.65)~(22.99±1.14)℃之间;由于受到自然降水影响,W5的月际变化不规律. ②Q10季节差异明显,最大值(3.31)出现在春季,观测期内的平均值为2.01. ③RS与T5之间呈显著正相关(P<0.05),与W5的关系不明显(P>0.05);RS与T5、W5的关系模型拟合度分别为87%和26%;T5与W5的复合模型对RS的变化解释能力为89%,高于单一模型. ④影响Q10的主要因素是T5,其次为W5.   相似文献   

2.
为了揭示干旱半干旱区高寒湿地不同水分梯度对土壤呼吸规律的影响,以及土壤温度与含水量对土壤呼吸影响的差异性,以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,在2014年植物生长季利用LI-8100土壤碳通量自动测量系统对不同水分条件(常年积水区、季节性积水区、常年干燥区)下的土壤呼吸速率进行测定,分析土壤呼吸日变化、季节性变化特征及其与土壤温度、土壤体积含水量的关系. 结果表明:①不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤呼吸速率日变化均呈明显的单峰曲线,常年积水区、季节性积水区、常年干燥区土壤呼吸速率最大值分别为1.97、7.39、8.83 μmol/(m2·s),均出现在13:00—15:00;土壤CO2日累积排放量季节性变化明显,差异性达到极显著水平(P<0.01),三者的最大值分别为0.12、0.45、0.40 mol/m2,地表积水显著抑制了土壤呼吸,提高了土壤碳稳定性. ②不同水分条件下土壤呼吸速率与土壤温度、土壤体积含水量之间均呈极显著正相关(P<0.01),常年积水区、季节性积水区和常年干燥区的Q10(土壤呼吸温度敏感性)差异性极显著(P<0.01),其大小表现为常年干燥区(1.54)<常年积水区(2.22)<季节性积水区(3.36),各水分区域6月典型日的Q10最大,表现为常年干燥区(2.56)<季节性积水区(4.30)<常年积水区(4.75),说明水分条件显著影响Q10. ③巴音布鲁克天鹅湖高寒湿地土壤呼吸受地下5 cm处土壤温度(T)与0~5 cm土壤体积含水量(W)的综合影响,季节性积水区土壤呼吸速率与二者之间满足最佳拟合模型Rs=-1.113+0.041W-0.366T+0.008WT,常年干燥区则满足最佳拟合模型Rs=1.470+0.023W-0.027T+0.002WT.   相似文献   

3.
为探讨土壤呼吸对植被类型及不同季节环境因素的响应机制,以黄土高原渭北台塬马莲滩林场为研究区,于2015年5月—2016年4月,采用静态箱-气象色谱法逐月测定不同土地利用方式下的土壤呼吸速率(Rs),分析其干、湿季差异及与土壤温度(T)、土壤含水量(W)之间的关系.结果表明:①不同土地利用方式下土壤呼吸速率的季节性变化趋势相一致,最大值出现在6—8月,最小值出现在12月—翌年2月,土壤呼吸速率年均值表现为天然草地>灌木林地>乔木林地>乔灌混交林地>耕地>果园.②不同土地利用方式下土壤呼吸速率与土壤温度均呈正相关,与土壤含水量的关系在湿季(5—10月)呈正相关,在干季(11月—翌年4月)呈负相关,土壤呼吸速率的单因素模型中以指数函数(Rs=aebx)的拟合效果更优.③与单因素模型相比,土壤温度、土壤含水量的双因素模型(Rs=aTbWc和Rs=aebTWc)能更好地解释除耕地外的其他5种土地利用方式下土壤呼吸速率的变化特征,对土壤呼吸速率的解释率在60.0%~82.3%之间,其中Rs=aTbWc对耕地、灌木林地、果园土壤呼吸速率与土壤温度、土壤含水量间关系的拟合效果较好,天然草地、乔木林地、乔灌混交林地则采用Rs=aebTWc的拟合效果较好.研究显示,研究区不同土地利用方式下土壤呼吸速率存在明显的季节性差异,耕地退耕还林后土壤有机碳及活性有机碳含量增加,温度敏感性(Q10)降低,土壤呼吸速率增大,评价退耕还林效益时应综合考虑区域地理气候特点,进一步量化碳的输入/输出过程.   相似文献   

4.
以重庆缙云山针阔混交林为试验地,开展针阔混交林土壤各组分呼吸速率的分离量化及其与环境因子之间的关系研究. 于2011—2013年生长季(4—9月),利用壕沟断根和移除凋落物方法区分RA(自养呼吸速率)、RH(异养呼吸速率)、RL(凋落物呼吸速率)及RSOM(有机质呼吸速率);同时,实地观测土壤各组分呼吸速率、AT(大气温度)、SR(太阳总辐射强度)、ST(5 cm深处土壤温度)和SW(5 cm深处土壤湿度),并通过相关性分析,研究土壤各组分呼吸速率与环境因子之间的关系. 结果表明:①除RL外,其他组分呼吸速率的月际变化均呈单峰曲线趋势,最大值均出现在6月或7月,月均值差异显著(P<0.05);土壤各组分呼吸速率年均值年际变化均不明显(P>0.05),但土壤各组分呼吸速率年均值之间存在显著差异(P<0.05). ②RA和RH分别占RT(土壤总呼吸速率)的27%和73%,RSOMSOM占RH的63%. ③除RL外,其他土壤组分呼吸均与AT和ST呈显著相关(P<0.05),表明AT和ST是影响土壤各组分呼吸速率的主要因子. ④指数模型最适用于描述该区AT和ST与土壤各组分呼吸速率之间的关系;除RL外,其他土壤组分呼吸对AT的敏感性Q10(温度每增加10 ℃所造成的呼吸速率改变的商)高于ST,并且不同组分呼吸的Q10之间存在差异.   相似文献   

5.
北京西山侧柏人工林土壤呼吸组分及其影响因素   总被引:1,自引:1,他引:0  
采用挖壕法,利用LI-8100土壤CO2通量自动观测系统,确定了北京西山侧柏人工林土壤呼吸中异养呼吸和根系自养呼吸的贡献率及其影响因子,分析了土壤呼吸的日、月际时间尺度的变异特征,并利用经验模型分析了土壤温度、土壤体积含水量对土壤呼吸的影响.结果表明:1土壤呼吸速率、异养呼吸速率的昼夜变化呈现单峰变化趋势,峰值出现在14:00—15:00;月际变化也呈单峰变化趋势,峰值出现在7—8月;观测期内土壤呼吸速率日均值变化范围在0.09~12.16μmol·m-2·s-1,异养呼吸速率日均值变化范围在0.02~10.86μmol·m-2·s-1,年均贡献率为69.59%;自养呼吸速率日均值为0.01~6.79μmol·m-2·s-1,年均贡献率为30.41%.2土壤温度的日、月际变化均呈单峰形曲线变化而土壤体积含水量变化规律不明显;整个观测期间土壤呼吸速率的温度敏感系数Q10为2.91,异养呼吸速率的Q10为3.52.3模型研究表明,相对于土壤温度、土壤体积含水量单因素模型,土壤温度与土壤体积含水量的复合模型对土壤呼吸速率变化解释能力为86.8%,对异养呼吸速率的解释能力为74.4%.该研究为森林生态系统碳收支估测及碳循环提供数据依据.  相似文献   

6.
以重庆缙云山亚热带针阔混交林为研究区,研究了土壤呼吸及其Q10(温度敏感性系数,指温度增加10℃所造成的呼吸速率改变的商)的时间变异特征,并深入分析二者受土壤温度、湿度变化的影响.2011年4—12月采用LI-8100二氧化碳通量测量系统观测选取样地的R S(土壤呼吸速率)、土壤5 cm深处的T5(土壤温度)和W5(土壤湿度),分析R S与Q10的变化规律;同时利用单一和二元混合模型探讨T5和W5对R S、Q10的影响.结果表明:①在观测期内R S和T5月均值均呈单峰曲线变化;R S的变化范围在(1.38±0.15)~(3.94±0.21)μmol/(m2·s)之间,T5的变化范围在(9.28±0.65)~(22.99±1.14)℃之间;由于受到自然降水影响,W5的月际变化不规律.②Q10季节差异明显,最大值(3.31)出现在春季,观测期内的平均值为2.01.③R S与T5之间呈显著正相关(P0.05),与W5的关系不明显(P0.05);R S与T5、W5的关系模型拟合度分别为87%和26%;T5与W5的复合模型对R S的变化解释能力为89%,高于单一模型.④影响Q10的主要因素是T5,其次为W5.  相似文献   

7.
西藏高原草原化小嵩草草甸生长季土壤微生物呼吸测定   总被引:11,自引:2,他引:9  
以西藏当雄县草原化小嵩草草甸生态系统为研究为对象,利用Li6400-09对生长季土壤微生物异养呼吸进行了测定。土壤异养呼吸R(h)动态与土壤温度T()变化趋势一致,尤其与5cm地温相关性最强,说明5cm地温是土壤微生物异养呼吸的主要限制因子。在生长季中土壤异养呼吸与5cm土壤温度呈现不同的函数关系:在降水比较集中的雨季(6~8月),函数关系是Rh=0.106exp0.133T;在降水相对较少的旱季(5月,9~10月),函数关系是Rh=0.18exp0.0833T。在生长季中,雨季土壤日异养呼吸量为2.4g CO2.m-2,雨季异养呼吸总量为219.6g CO2.m-2,Q 10为3.8;旱季日异养呼吸量为1.8g CO2.m-2,呼吸总量为160.2gCO 2.m-2,Q 10值为2.3。结果表明,土壤异养呼吸在降水集中的雨季对土壤温度反应更敏感,在生长季不同时期由于降水格局的影响,土壤水分对土壤微生物异养呼吸对温度的响应有调节作用。2004年生长季(5~10月)土壤异养呼吸总量达379.8gCO2.m-2。  相似文献   

8.
利用LI-8100土壤呼吸自动观测系统于2013年5月和8月分别观测了北长山岛森林土壤碳通量以及土壤温度和湿度,并分析了土壤碳通量变化特征及其影响机制。结果表明:北长山岛森林土壤碳通量的昼夜变化均表现为单峰曲线,最高值出现的时刻大约在14:30,最低值出现的时刻大约在06:00。土壤碳通量日均值介于1.835~14.475 mol/(m2s)。5月份刺槐林、黑松林和8月份刺槐林、黑松林的土壤碳通量与10 cm深度处土壤温度都存在显著的指数型关系(P 0.05),其温度敏感系数Q10依次为1.448,1.301,3.254和3.445;与0~10 cm土壤湿度依次呈指数型、一元二次方程型、线性型关系。多元回归分析表明:北长山岛林地0~10 cm处的土壤温度和湿度均为土壤碳通量的重要调控因子,且其协同作用能解释土壤碳通量73.1%~91.5% 的变化情况。  相似文献   

9.
黄土高原半干旱区土壤呼吸对土地利用变化的响应   总被引:2,自引:0,他引:2  
明确土地利用方式变化条件下引起土壤呼吸差异性的因素,对预测黄土区退耕还草条件下土壤碳循环变化有重要意义。基于建立于1984 年的长期定位试验,于2011 年3 月至2012年12 月,利用Li-8100 系统(Li-COR,Lincoln,NE,USA)监测了退耕还草(苜蓿)处理和农田(冬小麦)土壤呼吸季节变化以及土壤表层(0~5 cm)温度和含水量,研究了土地利用变化下土壤呼吸变化特征及其与土壤温度、水分以及有机碳特性之间的关系。结果发现,退耕27 a 来(自1984年麦地转化为苜蓿地),土壤呼吸速率苜蓿地(3.55 μmol·m-2·s-1)达小麦地(1.36 μmol·m-2·s-1)的2.61 倍,累积呼吸量苜蓿地(981 g·m-2)达小麦(357 g·m-2)的2.75 倍。土壤呼吸温度敏感系数(Q10)苜蓿地较小麦地2011 年提高24.5%,2012 年提高2.4%。苜蓿地SOC含量(10.5 g·kg-1)较小麦地(6.5 g·kg-1)提高61.5%,微生物量碳(204 mg·kg-1)较小麦地(152 mg·kg-1)提高34%,0~5 cm土壤水分含量同期高于小麦地,但二者土壤温度差异不显著。土壤水分、SOC、微生物量碳等是造成二者呼吸差异的因素。  相似文献   

10.
为深入探究典型热带海滨城市环境空气臭氧(O3)污染特征与成因,于2019年6~10月在海南省海口市城区站点开展O3及其前体物观测实验,较为全面地分析了O3污染特征,基于观测的模型(OBM)识别了O3生成控制区,分析了O3前体物敏感性,并开展了O3前体物减排效果评估.结果表明:(1)海口市O3污染主要出现在9月和10月,观测期间O3日最大8h滑动平均值范围为39~190μg·m-3,O3日变化呈单峰型,于14:00左右达到峰值.(2)海口市超标日NOx和VOCs浓度高于达标日,前体物浓度的升高是导致O3污染的内在因素,同时O3污染受区域传输影响,污染物主要来自于海口市东北部地区.(3)海口市O3生成处于VOCs和NOx协同控制区.9~10月O3  相似文献   

11.
根据中国科学院禹城综合试验站牧草生态试验场土壤呼吸测定数据,分析了刈割前后3年生和6年生苜蓿、白三叶及小黑麦4种人工草地土壤呼吸日变化特征及刈割对草地土壤呼吸速率的影响。结果表明:①刈割前不同牧草地的土壤呼吸强度差异明显,依次为3年生苜蓿>6年生苜蓿>白三叶>小黑麦,刈割后不同牧草地的土壤呼吸强度相差不大,土壤呼吸速率在3.0~3.5 μmol CO2·m-2·s-1之间;②刈割前不同牧草地的土壤呼吸日变化不相同,6年生苜蓿与小黑麦草地刈割前土壤呼吸速率由9:00开始逐渐增强,在12:00~16:00之间持续较高,以后逐渐下降,3年生苜蓿与白三叶草草地土壤呼吸速率在9:00~12:00之间逐渐升高,12:00到达峰值,之后逐渐下降;③与刈割前相比,4个处理牧草刈割10 d后其草地的土壤呼吸速率下降了30%~40%;④刈割前后Q10值在1~2.32之间,平均值为1.37,刈割前平均值为1.63,刈割后平均值降为1.10。  相似文献   

12.
六盘山林区几种土地利用方式土壤呼吸时间格局   总被引:38,自引:5,他引:33  
测定分析了六盘山林区典型的天然次生林[灌木林、山杨(Populus davidanda dode)林和辽东栎(Quercesliaotungensis koiz)]林、农田、草地和人工林[13a、18a和25a华北落叶松(Larix principis-rupprechtil mayr)]土壤呼吸时间格局.结果显示:随着温度升高,土壤呼吸速率逐渐升高,温度最高值在13:00~15:00点钟、最低值在凌晨4:00~8:00点钟,土壤呼吸速度最高和最低值也在这个时间范围.5~10月,土壤呼吸速率呈现增加而又降低的趋势,在8~9月达最大值,10月下降,这种变化主要与土壤温度变化基本一致.农田和草地土壤呼吸速率的昼夜或月变化幅度比天然次生林和人工林中大,且农田和草地土壤呼吸速率在昼夜或月变化中的最高值比天然次生林和人工林高、最低值比天然次生林和人工林低.天然次生林土壤年呼吸量平均在3.96~4.51 t/(hm2·a)、农田在1.91 t/(hm2·a)、草地在5.08 t/(hm2·a)、人工林在4.11~5.55t/(hm2·a).结果说明天然次生林变成农田或草地后,将使土壤呼吸速率的昼夜或月变化幅度增大,而农田或草地上造林后又将使这些变化幅度减小.另外,土地利用变化也将使土壤的年呼吸量改变.  相似文献   

13.
为探究黄土丘陵区退耕草地土壤呼吸及其组分日变化对氮磷添加的响应,采用裂区试验设计,主区施氮[0,50和100kg N/(hm2·a)]和副区施磷[0,40和80kg P2O5/(hm2·a)],于2019年5~8月每月测定各处理下土壤呼吸速率、异养呼吸速率及土壤温度和含水量日变化.结果表明,土壤呼吸速率及其组分日变化均呈单峰曲线,峰值出现在12:00~14:00.与不施肥相比,土壤呼吸、异养呼吸和自养呼吸速率在单施氮下分别增加7.31%~13.13%,1.12%~12.43%和7.64%~46.26%,单施磷下分别增加16.84%~18.42%,11.48%~14.22%和17.15%~29.59%,氮磷配施下分别增加24.17%~27.30%,21.94%~32.43%和34.05%~41.26%.不同氮磷添加下土壤呼吸、异养呼吸和自养呼吸碳排放量昼占比分别为52.68%~61.37%,50.92%~58.70%和51.39%~76.35%.50kg N/(hm2·a)和80kg P2O5/(hm2·a)配施处理的土壤累积CO2排放量(2012g/m2)最高,不施肥处理的土壤累积CO2排放量(1531g/m2)最低.各处理的土壤呼吸,异养呼吸和自养呼吸均与土壤温度呈显著指数正相关关系,其温度敏感性(Q10)变化范围分别为1.19~1.86,1.08~1.81和1.11~3.67,氮磷添加降低异养呼吸的Q10值,但提高自养呼吸的Q10值.总体表明,氮磷添加增加土壤呼吸及其组分速率,降低异养呼吸的温度敏感性,氮磷添加对土壤呼吸及其组分速率的促进效果与氮磷添加量及其配比有关.  相似文献   

14.
为探究盐湖区不同植物群落土壤CO2排放速率及影响因素,以新疆达坂城盐湖沿岸小獐毛、鸢尾、芨芨草、黑果枸杞群落和撂荒地土壤为研究对象,在2016年4~12月采用Li-8100A监测了不同植物群落土壤CO2排放特征,分析了CO2排放与5(ST5),10(ST10),15cm(ST15)土壤温度、含水量、电导率的关系.结果如下:4~12月小獐毛群落土壤CO2日排放呈单峰曲线,7月土壤CO2排放速率最高,峰值出现在14:00左右;7月鸢尾、芨芨草、黑果枸杞和撂荒地土壤CO2排放呈双峰曲线,峰值出现在10:00和14:00~16:00左右,其余月份均呈单峰曲线,峰值出现在12:00~14:00;不同植物群落类型、同一植物类型不同月份土壤CO2排放存在显著差异(P<0.001).4~12月芨芨草群落土壤CO2累积排放量最高(2508.01g/m2),大于撂荒地(2235.01g/m2)、鸢尾(1903.03g/m2)、黑果枸杞(1690.27g/m2)和小獐毛(550.34g/m2)植物群落处理.小獐毛群落土壤CO2排放与ST15显著相关(R2=0.739,P<0.05),且对ST15变化最敏感;鸢尾、芨芨草、黑果枸杞群落和撂荒地处理土壤CO2排放与ST5相关性较高(R2=0.708~0.821),对ST10变化响应敏感.小獐毛群落土壤温度敏感系数(Q10)最大值出现在6月(7.97),鸢尾(21.74)、芨芨草(13.21)、黑果枸杞(18.23)和撂荒地(7.65)处理则出现在11,12月.不同植物群落土壤CO2排放与含水量相关性较低;一元线性方程(logeCf=-0.149EC+0.943)能较好的模拟土壤电导率(EC)与CO2排放(Cf)的关系.除土壤温度外,盐分也是影响盐湖沿岸土壤碳排放的重要因素.因此,在考虑陆地生态系统碳收支时不能忽略盐湖生态系统,以及盐分对土壤碳过程的影响.  相似文献   

15.
库布齐沙漠油蒿灌丛土壤呼吸速率时空变异特征研究   总被引:4,自引:0,他引:4  
孟祥利  陈世苹  魏龙  林光辉 《环境科学》2009,30(4):1152-1158
利用Li-840红外气体分析仪和Li-6400-09土壤呼吸气室组装而成的动态密闭土壤呼吸测定系统,于2006年生长季对内蒙古库布齐沙漠油蒿(Artemisia ordosica)生态系统2种不同类型土壤的土壤呼吸速率进行了野外测定,分析了日动态、季节动态及其对环境因子的响应,并阐述了油蒿灌丛空间异质性的特征.结果表明,油蒿灌丛的土壤呼吸速率日动态呈单峰曲线,在12:00左右有最大值.在适宜的水分和温度条件下,生长季里土壤呼吸速率在7~8月份出现最大值.土壤呼吸速率的季节动态与土壤含水量有显著的相关关系,表明水分是限制生长季干旱区灌丛土壤呼吸的最重要因子,分别可以解释油蒿冠幅下土壤和裸地的土壤呼吸速率2006年主要生长季节(5~9月)变化的75%和77%.油蒿灌丛土壤呼吸速率在空间尺度上存在着显著的异质性.油蒿冠幅覆盖下的土壤呼吸速率季节平均值为(155.58±15.20) mg·(m2·h)-1,要显著地大于灌丛间裸地的数值(110.50±6.77) mg·(m2·h)-1.2种不同类型土壤的土壤呼吸速率是由于根生物量的差异引起的,根生物量可以解释2006年生长季库布齐油蒿灌丛土壤呼吸速率空间异质性的43%.结果表明,在植被覆盖度异质性较大的灌丛生态系统中,要准确定量生态系统碳的释放时,必须充分考虑小尺度上土壤呼吸的空间异质性.  相似文献   

16.
氮沉降在很大程度上会对土壤呼吸产生扰动,进而影响到生态系统碳收支.以我国亚热带湿地松人工林为研究对象,通过定位模拟氮沉降控制试验,定量研究根系呼吸和微生物呼吸对氮添加的响应差异,并通过土壤环境的同步监测,初步探讨影响上述过程的生物地球化学与微生物学机理.结果表明:不同氮素添加水平下土壤呼吸速率及其组分总体上都呈现出单峰曲线特征,峰值出现在7月或8月,氮添加对土壤呼吸的季节模式没有明显影响.CK(0,对照)、LN〔60 kg/(hm2·a),低氮〕和HN〔120 kg/(hm2·a),高氮〕处理下土壤总呼吸速率的年均值分别为3.91、2.30和1.73 μmol/(m2·s),各组根系呼吸速率年均值分别为1.41、0.87和0.66 μmol/(m2·s),各组微生物呼吸速率年均值分别为2.50、1.44和1.07 μmol/(m2·s).施氮后土壤总呼吸及其组分都受到明显抑制,并且随着施氮水平的提高,土壤总呼吸及其组分明显减小.与对照样地微生物呼吸占比65.2%相比,低氮和高氮处理下微生物呼吸占比显著降低,降幅分别为62.6%和62.1%,说明氮素添加对微生物呼吸的抑制作用大于根系呼吸.施氮后一年,氮素输入对土壤呼吸的抑制在消退.施氮对表层土壤w(TOC)(TOC为总有机碳)、w(NH4+)、w(NO3-)、w(DOC)(DOC为可溶性有机碳)、w(DON)(DON为可溶性有机氮)、w(MBC)(MBC为微生物生物量碳)和w(MBN)(MBN为微生物生物量氮)都没有显著影响.氮素添加主要是通过降低土壤pH、加速湿地松人工林土壤酸化,对影响土壤有机质转化的土壤脲酶和蔗糖酶活性产生显著抑制,从而影响到土壤微生物活性,导致土壤微生物呼吸降低,这可能是土壤呼吸对氮添加响应的关键机制.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号