首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiple melting behavior of poly(butylene succinate) (PBSu) was studied with differential scanning calorimetry (DSC). Three different PBSu resins, with molecular weights of 1.1 × 105, 1.8 × 105, and 2.5 × 105, were cooled from the melt (150 °C) at various cooling rates (CRs) ranging from 0.2 to 50 K min?1. The peak crystallization temperature (Tc) of the DSC curve in the cooling process decreased almost linearly with the logarithm of the CR. DSC melting curves for the melt‐crystallized samples were obtained at 10 K min?1. Double endothermic peaks, a high‐temperature peak H and a low‐temperature peak L, and an exothermic peak located between them appeared. Peak L decreased with increasing CR, whereas peak H increased. An endothermic shoulder peak appeared at the lower temperature of peak H. The CR dependence of the peak melting temperatures [Tm(L) and Tm(H)], recrystallization temperature (Tre), and heat of fusion (ΔH) was obtained. Their fitting curves were obtained as functions of log(CR). Tm(L), Tre, and ΔH decreased almost linearly with log(CR), whereas Tm(H) was almost constant. Peak H decreased with the molecular weight, whereas peak L increased. It was suggested that the rate of the recrystallization decreased with the molecular weight. Tm(L), Tm(H), Tre, and Tc for the lowest molecular weight sample were lower than those for the others. In contrast, ΔH for the highest molecular weight sample was lower than that for the others. If the molecular weight dependence of the melting temperature for PBSu is similar to that for polyethylene, the results for the molecular weight dependence of PBSu can be explained. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2411–2420, 2002  相似文献   

2.
In the millimolar concentration domain (typically 1 mM), dioctadecyldimethylammonium bromide and chloride (DODAX, X representing Br or Cl counterions) molecules assemble in water as large unilamellar vesicles. Differential-scanning calorimetry (DSC) is a suitable technique to obtain the melting temperature (T m) characteristic of surfactant bilayers, while fluorescence spectroscopy detects formation of surfactant aggregates, like bilayers. These two techniques were combined to investigate the assembly of DODAX molecules at micromolar concentrations, from 10 to 100 μM. At 1 mM surfactant, T m ≈ 45 °C and 49 °C, respectively, for DODAB and DODAC. DSC and fluorescence of Nile Red were used to show the formation of DODAX aggregates, at the surfactant concentration as low as 10 μM, whose T m decreases monotonically with increasing DODAX concentration to attain the value for the ordinary vesicles. The data indicate that these aggregates are organized as bilayer-like structures.  相似文献   

3.
The multiple melting behavior of poly(butylene succinate) (PBSu) was studied with differential scanning calorimetry (DSC). Three different PBSu resins, with molecular weights (MWs) of 1.1 × 105, 1.8 × 105, and 2.5 × 105, were isothermally crystallized at various crystallization temperatures (Tc) ranging from 70 to 97.5 °C. The Tc dependence of crystallization half‐time (τ) was obtained. DSC melting curves for the isothermally crystallized samples were obtained at a heating rate of 10 K min−1. Three endothermic peaks, an annealing peak, a low‐temperature peak L, and a high‐temperature peak H, and an exothermic peak located between peaks L and H clearly appeared in the DSC curve. In addition, an endothermic small peak S appeared at a lower temperature of peak H. Peak L increased with increasing Tc, whereas peak H decreased. The Tc dependence of the peak melting temperatures [Tm(L) and Tm(H)], recrystallization temperature (Tre), and heat of fusion (ΔH) was obtained. Their fitting curves were obtained as functions of Tc. Tm(L), Tre, and ΔH increased almost linearly with Tc, whereas Tm(H) was almost constant. The maximum rate of recrystallization occurred immediately after the melting. The mechanism of the multiple melting behavior is explained by the melt‐recrystallization model. The high MW samples showed similar Tc dependence of τ, and τ for the lowest MW sample was longer than that for the others. Peak L increased with MW, whereas peak H decreased. In spite of the difference of MW, Tm(L), Tm(H), and Tre almost coincided with each other at the same Tc. The ΔH values, that is crystallinity, for the highest MW sample were smaller than those for the other samples at the same Tc. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2039–2047, 2005  相似文献   

4.
Melting behavior of an experimental Halar film, a predominantly alternating 1:1 copolymer of ethylene (E) and chlorotrifluoroethylene (CTFE), has been studied. Differential scanning calorimetry (DSC) reveals single or double melting peaks, depending upon the thermal history. The lower-temperature melting peak Tm1 is produced only by the thermal treatment and shows a strong dependence on annealing time and temperature. On the basis of the DSC and x-ray data it can be suggested that Tm1 represents the melting of relatively small crystallites formed upon annealing. The higher-temperature melting peak Tm2 is always shown at 238°C. (Note: the specification for commercial Halar product is 240°C. The slightly lower melting temperature reported in this study is probably due to the fact that we are dealing with an experimental melt-processed material.) On the basis of the heating rate study we propose that Halar crystallizes with stable crystals (Tm2 = 238°C) regardless of the crystallization conditions, i.e., quenching, slow cooling, or even annealing. Crystals of Halar have a heat of fusion of approximately 35 cal/g or 146 kJ/kg. Detailed analysis of the melting behavior of Halar is presented.  相似文献   

5.
Poly(lactic acid) (PLA) stereocomplexes have high potential as renewable materials for advanced polymer applications, mainly due to their high melting temperature (Tm, typically 230–240°C). The properties of PLA stereocomplexes consisting of linear high molar mass homopolymers have been studied extensively in the past, but the available information about the possibilities to affect the thermal properties of the stereocomplex by varying the structure of the blend components has not been sufficient. Novel stereocomplexes containing linear or star‐shaped D ‐lactic acid (D ‐LA) oligomers and high molar mass poly(L ‐lactide) (L‐ PLA) were thus prepared. The Tm and melting enthalpy (ΔHm) of the racemic crystallites were found to depend strongly on both the blending ratio and the arm‐length of the D ‐lactic acid oligomer. The preparation method of the oligomers, i.e. step‐growth polymerization or ring‐opening polymerization (ROP), did not affect the Tm or ΔHm of the blends significantly. Slightly higher ΔHm values were, however, obtained, when linear oligomers were used. The results thus indicated that the Tm and ΔHm of PLA stereocomplexes could be optimized, simply by selecting a D ‐LA oligomer having a suitable arm‐length and structure as the other blend component. The possibility to adjust the melting behavior of the stereocomplex blend is a significant advantage and could make PLA suitable for a wider range of products used at elevated temperatures. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Annealing of poly(butylene terephthalate) (PBT) was studied by differential scanning calorimetry (DSC) and small angle X‐ray scattering (SAXS) measurement. A PBT sample was annealed at a recrystallization temperature where recrystallization occurs with a maximum rate in the heating process of the sample. In the subsequent annealing steps, the annealed sample was annealed repeatedly at the recrystallization temperatures, and the stepwise annealing sample was obtained. Peak melting temperature (Tm) and sharpness of DSC peak of the stepwise annealing sample increased with the annealing step. A high melting‐temperature sample was obtained in a short time, and Tm increased up to 238.5°C which is higher than all the Tm values that appear in the literature. The long period calculated from SAXS curves of the stepwise annealing sample increased with the annealing step. The increase of crystallite size and perfection of the crystal in the stepwise annealing process is suggested. Annealing experiment indicated that T°m should be higher than about 235°C. Tm increased linearly with the annealing temperature of the final step in the stepwise annealing (Ta). The equilibrium melting temperature (T°m) for PBT was estimated to be 247°C by the application of a Hoffman–Weeks plot to the relation between Tm vs. Ta. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2420–2429, 1999  相似文献   

7.
The melting and crystallization behavior of poly(L -lactic acid) (PLLA; weight-average molecular weight = 3 × 105) was studied with differential scanning calorimetry (DSC). DSC curves for PLLA samples were obtained at various cooling rates (CRs) from the melt (210 °C). The peak crystallization temperature and the exothermic heat of crystallization determined from the DSC curve decreased almost linearly with increasing log(CR). DSC melting curves for the melt-crystallized samples were obtained at various heating rates (HRs). The double-melting behavior was confirmed by the double endothermic peaks, a high-temperature peak (H) and a low-temperature peak (L), that appeared in the DSC curves at slow HRs for the samples prepared with a slow CR. Peak L increased with increasing HR, whereas peak H decreased. The peak melting temperatures of L and H [Tm(L) and Tm(H)] decreased linearly with log(HR). The appearance region of the double-melting peaks (L and H) was illustrated in a CR–HR map. Peak L decreased with increasing CR, whereas peak H increased. Tm(L) and Tm(H) decreased almost linearly with log(CR). The characteristics of the crystallization and double-melting behavior were explained by the slow rates of crystallization and recrystallization, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 25–32, 2004  相似文献   

8.
9.
The crystallization behavior after partial or complete melting of the α phase of iPP is examined by combined differential scanning calorimetry (DSC) and optical microscopy: calorimetric results are directly correlated with corresponding morphologies of microtome sections of DSC samples. On partial melting at various temperatures (hereafter referred to as Ts) located in a narrow range (4°C) below and near Tm, the number of nuclei increases (as in classical self-nucleation experiments), by several orders of magnitude; on subsequent cooling, the crystallization peak is shifted by up to 25°C. After partial melting in the lower part of the Ts range and recrystallization, the polymers display a prominent morphology “memory effect” whereby a phantom pattern of the initial spherulite morphology is maintained. After partial melting in the upper part of the Ts range the initial morphology is erased and self-nucleation affects only the total number of nuclei. The present experimental procedures make it possible to define, under “standard” conditions, the crystallization range of the polymer and in particular, the maximum crystallization temperature achievable when “ideally” nucleated. © John Wiley & Sons, Inc.  相似文献   

10.
The thermal stability of a short carbon-fiber-reinforced PEEK composite was assessed by thermogravimetry and by a Rheometrics dynamic analyzer. The results indicated that holding for 10 min at 380°C was a suitable melting condition to avoid the thermooxidative degradation under air. After proving that the heating rate of 50°C/min can be used to evaluate the crystallinity, a heating stage was used to prepare nonisothermally crystallized specimens using cooling rates from 1 to 100°C/min after melting at 400°C for 3 or 15 min. The degree of crystallinity and the melting behavior of these specimens were investigated by DSC at a heating rate of 50°C/min. The presence of three or four regions indicated that the upper melting temperature, Tm, changed with the crystallization temperature. The first region with the highest Tm, which corresponded to the cooling rate of 1°C/min, can be associated with the crystallization in regime II. There was a second region where Tm decreased as the amount of crystals formed in regime II decreased with increasing cooling rate from 5 to 20°C/min. The third region, a plateau region, corresponded to regime III condition in which the crystals were imperfect. In the fourth region, the cooling was so fast that crystallization was incomplete during the cooling for the melting condition of 400°C for 15 min. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2225–2235, 1998  相似文献   

11.
Polymethyl methacrylate (PMMA) polymer chains were grafted on neoprene W (NW) by a one-step ATRP reaction. The thermal properties of the products were analyzed by DSC. Improvement of T g was a result of the PMMA grafted chains. Also, the melting point (T m ) changed from 42°C for NW to 142°C for modified NW. Using different solvents for the resulting copolymers, aggregates were obtained. Phase separation was influenced by the grafting degree of PMMA and the employed solvent. The copolymers were analyzed by GPC, FT-IR, DSC, and SEM.  相似文献   

12.
The thermal behaviour of salicylsalicylic acid (CAS number 552-94-3) was studied by differential scanning calorimetry (DSC). The endothermic melting peak and the fingerprint of the glass transition were characterised at a heating rate of 10°C min-1. The melting peak showed an onset at T on = 144°C (417 K) and a maximum intensity at T max = 152°C (425 K), while the onset of the glass transition signal was at T on = 6°C. The melting enthalpy was found to be ΔmH = 28.9±0.3 kJ mol-1, and the heat capacity jump at the glass transition was ΔC P = 108.1±0.1 J K-1mol-1. The study of the influence of the heating rate on the temperature location of the glass transition signal by DSC, allowed the determination of the activation energy at the glass transition temperature (245 kJ mol-1), and the calculation of the fragility index of salicyl salicylate (m = 45). Finally, the standard molar enthalpy of formation of crystalline monoclinic salicylsalicylic acid at T = 298.15 K, was determined as ΔfHm o(C14H10O5, cr) = - (837.6±3.3) kJ mol-1, by combustion calorimetry. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The tendon ruptures are serious injuries of the lover limb in middle age and physically active population. While the Achilles tendon rupture is common, the patellar ligament and quadriceps ligament ruptures are an absolutely rare injury. Usually there is no correlation between the velocity of the trauma and the supervening of the rupture. The aetiology of the degenerative changes in the collagen structures of the tendons and ligaments which could be disposed for the rupture are still not clear. Our hypothesis was that before the injury there are clear pathological abnormalities in the tissues of the tendons, which are predisposed for the rupture, and could be monitored besides the classical histological methods by differential scanning calorimetry. The thermal denaturation of human samples was monitored by a SETARAM Micro DSC-II calorimeter. All the experiments were performed between 0 and 100 °C. The heating rate was 0.3 K/min. DSC scans clearly demonstrated significant differences between the control and ruptured samples (control: T m = 59.7 °C, T 1/2 = 1.4 °C and ΔH cal = 8.54 J/g; ruptured Achilles tendon: T m = 62.75 °C, T 1/2 = 2.6 °C and ΔH cal = 1.54 J/g, ruptured Quadriceps tendon: T m = 64.8 °C, T 1/2 = 1.6 °C and ΔH cal = 1.53 J/g, ruptured Patellar tendon: T m = 63.9 °C, T 1/2 = 1.41 °C and ΔH cal = 0.97 J/g). These observations could be explained with the structural alterations caused by the biochemical processes. With our investigations we could demonstrate that DSC is a useful and well applicable method for the investigation of collagen tissue of the degenerated human tendons and ligaments. We can prove with this method that the degenerative changes of the tissue elements increase the thermal stability of collagen tissues of the tendons which could be disposed for the rupture.  相似文献   

14.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

15.
Copolycondensations of (S,S)-2,5-bis(2-methylbutyloxy) terephthaloylchloride with 2,5-bis(dodecyloxy)terephthaloylchloride and with 4,4′-bistrimethylsiloxybiphenyl yielded a series of novel chiral thermotropic copolyesters. These polyesters were characterized by elemental analyses, inherent viscosities, 1H-NMR spectroscopy, optical rotations, optical microscopy, DSC measurements, and WAXS powder patterns recorded with synchrotron radiation under variation of the temperature. All homo- and copolyesters formed a solid sanidic layer structure with melting temperatures (Tm) ≥ 200°C. A broad enantiotropic nematic or cholesteric phase is formed above Tm with isotropization temperatures (Tis) in the range of 275–325°C. Yet, the Tm of the chiral homopolyester is so high (378°C) that the melting process is immediately followed by rapid degradation. The cholesteric phases of the copolyesters displayed unusual mobile schlieren textures, but a stable Grandjean texture was never obtained. Cholesteric domains consisting of loose bundles of more or less helical main chains are discussed as supramolecular order responsible for the observed textures and their pronounced temperature dependence. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 947–957, 1997  相似文献   

16.
In order to observe the influence of sodium chloride on the melting temperature of collagen crystalline region in three new parchments, samples were soaked in water (blanks) and NaCl solutions of different concentrations, then removed, dried in air and measured by means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The melting temperature of crystalline region of collagen, T m, was determined as the minimum of the endothermal peak in the range 200–250 °C and as the inflection point of the decrease of storage modulus, respectively. There was observed a decrease in melting temperature of the salt-treated parchments compared to the samples soaked in water, sometimes significant (~20 °C) at certain concentrations of NaCl. Simultaneous TG/DTG/DSC thermal analysis (STA) was also applied for the determination of the amount of sodium chloride in salt-treated parchments, by calculating the mass loss due to the vaporization of NaCl, which occurs above 800 °C. By plotting T m determined by DSC and DMA versus the NaCl content of the samples, an apparent minimum is observed. Additional information regarding the structural features was also obtained through X-ray diffraction (XRD) and attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR). XRD data put in evidence the preservation of collagen crystalline region in all salt-treated samples, while FTIR measurements did not showed significant modification of collagen. By removing the sodium chloride from the salt-treated parchments through washing with water, there is a return of the melting temperatures to the values of blank samples, demonstrating the reversibility of this phenomenon.  相似文献   

17.
Self‐metathesis of erucic acid by [(PCy3)(η‐C‐C3H4N2Mes2)Cl2Ru = CHPh] (Grubbs second‐ generation catalyst) followed by catalytic hydrogenation and purification via the ester yields 1,26‐hexacosanedioate (>99% purity). Polyesterification with 1,26‐hexacosanediol, generated from the diester, affords polyester‐26,26, which features a Tm of 114 °C (Tc = 92 °C, ΔHm = 160 J g−1). Ultralong‐chain model polyesters‐38,23 (Tm = 109 °C) and −44,23 (Tm = 111 °C), generated via multistep procedures including acyclic diene metathesis polymerization, underline that melting points of such aliphatic polyesters do not gradually increase with methylene sequence chain length. Available data suggest that to mimic linear polyethylenes thermal properties, even longer sequences, amounting to at least four times a fatty acid chain, fully incorporated in a linear fashion are required.  相似文献   

18.
Synthetic helicases can be designed on the basis of ligands that bind more strongly to single‐stranded nucleic acids than to double‐stranded nucleic acids. This can be achieved with ligands containing phenyl groups, which intercalate into single strands, but due to their small size not into double strands. Moreover, two phenyl rings are combined with a distance that allows bis‐intercalation with only single strands and not double strands. In this respect, such ligands also mimic single‐strand binding (SSB) proteins. Exploration with more than 23 ligands, mostly newly synthesised, shows that the distance between the phenyl rings and between those and the linker influence the DNA unwinding efficiency, which can reach a melting point decrease of almost ΔTm=50 °C at much lower concentrations than that with any other known artificial helicases. Conformational pre‐organisation of the ligand plays a decisive role in optimal efficiency. Substituents at the phenyl rings have a large effect, and increase, for example, in the order of H<F<Cl<Br, which illustrates the strong role of dispersive interactions in intercalation. Studies with homopolymers revealed significant selectivity: for example, with a ligand concentration of 40 μM at 35 °C, only GC double strands melt (ΔTm=48 °C), whereas the AT strand remains untouched, and with poly(rA)–poly(rU) as an RNA model one observes unfolding at 29 °C with a concentration of only 30 μM .  相似文献   

19.
Cycloolefin copolymers (COCs, which are produced via ethylene/cycloolefin copolymerization) and cycloolefin polymers (COPs, which are synthesized by a rather complicated two-step process via ring-opening metathesis polymerization and subsequent hydrogenation) are commercialized materials used especially widely in optical applications. Although a COP can be used after processing into a film, films made from conventional COCs are too brittle. Optical-grade COCs and COPs are generally known as amorphous polymers. By contrast, here, a quasi-alternating ethylene/norbornene copolymer (norbornene content 56 mol%), prepared from a constrained-geometry Hf complex, shows some melting (Tm) signals in a broad temperature range (150–200°C) in the first heating scan of differential scanning calorimetry (DSC) when the samples are prepared by precipitation from a toluene solution. In the second heating scan, only glass transition (Tg) signals are observed at ~140°C with disappearance of Tm signals. The quasi-alternating ethylene/norbornene copolymer has better mechanical properties (greater elongation at break) than random congeners, which do not show any melting signal, though elongation at break is still inferior to that of the COP which shows the melting signal in the first heating scan of DSC. The enhanced mechanical properties of the quasi-alternating ethylene/norbornene copolymer and commercial-grade COP may be ascribed to semicrystallinity observed in the first heating scan.  相似文献   

20.
Solid-phase synthesis of the oligo(2′-deoxynucleotides) 19 and 20 containing 2′-deoxy-β-D -xylocytidine ( 4 ) is described. For this purpose, 1-(2-deoxy-β-D -threo-pentofuranosyl)cytosine ( = 1-(2-deoxy-β-D -xylofuranosyl)-cytosine; 4 ) was protected at its 4-NH2 group with a benzoyl (→ 5 ) or an isobutyryl (→ 8 ) residue, and a dimethoxytrityl group was introduced at 5′-OH (→ 7, 10 ; Scheme 2). Compounds 7 and 10 were converted into the 3′-phosphonates 11a,b . While 19 could be hybridized with 21 and 22 under formation of duplexes with a two-nucleotide overhang on both termini ( 19 · 21 : Tm 29°; 19 · 22 : Tm 22°), the decamer 20 bearing four xCd residues could no longer be hybridized with one of the opposite strands. Moreover, the oligonucleotides d[(xC)8? C] ( 13 ), d[(xC)4? C] ( 14 ), d[C? (xC)4? C] ( 15 ), and d[C? (xC)3? C] ( 16 ) were synthesized. While 13 exhibits an almost inverted CD spectrum compared to d(C9) ( 17 ), the other oligonucleotides show CD spectra typical for regular right-handed single helices. At pH 5, d[(xC)8? C] forms a stable hemi-protonated duplex which exhibits a Tm of 60° (d[(CH+)9] · d(C9): Tm 36°). The thermodynamic parameters of duplex formation of ( 13H + · 13 ) and ( 17H + · 17 ) were calculated from their melting profiles and were found to be identical in ΔH but differ in ΔS ( 13H + · 13 : ΔS = ?287 cal/K mol; 17H + · 17 : ΔS = ?172 cal/K mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号