首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
基于ANSYS CFX软件,利用Rayleigh-Plesset空化模型和SST湍流模型,在设计工况下,分别对首、次级叶轮单独以及对旋轴流式喷水推进泵整体进行了空化定常模拟,得到了各自的空化特性曲线.选择空化开始发生、临界空化点以及空化严重时3个工况比较分析首、次级叶轮内空化流动的发展情况.计算获得了不同净正吸头下叶片工作面、背面静压、背面空泡体积组分分布.计算结果表明,空化最初发生在首级叶轮叶片背面进口靠近轮缘的局部低压区,随着NPSH的减小,该空泡区域从轮缘向轮毂方向延伸.首、次级叶轮空化发展不同步,由于次级叶轮处于首级叶轮的预压下,首级叶轮发生空化时,次级叶轮并没有发生空化.计算结果从理论上较好地揭示了对旋轴流式推进泵空化性能的特点及其内部空化流动的特征.  相似文献   

2.
采用RNG k-ε湍流模型、完全空化模型对低扬程灯泡式贯流模型泵设计工况下的空化流动进行全流道数值计算,并预测其汽蚀性能曲线.选择包括空化开始出现、临界汽蚀余量点、空化严重时6个工况比较分析贯流泵内部空化流动的发展情况.计算获得了不同汽蚀余量时灯泡式贯流模型泵叶轮叶片吸力面静压、气体体积分数分布以及不同轴截面上的气体体积分数分布.计算结果表明:在给定的计算流量条件下,空化发生初期,空化发生在叶轮叶片吸力面的进口边,随着有效汽蚀余量的降低,预测了叶轮流道内的空化区域的演变,这些现象将会影响贯流泵的能量特性;在给定流量的其他空化条件下,当汽蚀余量为0.81 m时,Z=-20 mm横截面上的气体体积分数超过10%的区域占据了Z=-20 mm横截面进口流道的1/3,此时大量气泡严重堵塞叶轮流道.该灯泡式贯流泵空化流动的所有计算成果都可以被用来优化贯流泵的水力与结构设计.  相似文献   

3.
为研究离心泵汽蚀时其内部流动规律,基于Rayleigh-Plesset汽蚀模型和RNGk-ε湍流模型,对50IB-32型模型泵设计工况下汽蚀性能进行全流场数值计算.选择汽蚀发生点、临界汽蚀点以及汽蚀严重点3个工况比较分析叶轮内汽蚀的发展情况.数值计算获得了叶片工作面静压、叶片背面静压以及不同汽蚀余量下叶片背面气泡相体积分布图.计算结果表明:气泡最先出现在叶片背面进口低压区,随着进口压力的降低,气泡开始由进口处向流道内扩展,气泡相在叶片上的分布逐渐增大,在临界汽蚀点时,气泡分布已经扩散到流道内.随着汽蚀程度进一步加剧,气泡相分布向出口方向扩展,严重时气泡充满流道,干扰和破坏叶轮内液体的能量交换,引起汽蚀性能曲线下降.离心泵汽蚀试验结果与数值计算结果相吻合,验证了数值计算的可靠性.  相似文献   

4.
为研究余热排出泵叶轮内空化流动特性,基于Rayleigh-Plesset方程的混合物均相流空化模型和剪切应力运输SST k-ω湍流模型,对余热排出泵水力样机叶轮内空化流动进行数值计算.根据计算结果获得了余热排出泵水力样机空化性能、设计流量工况不同装置空化余量条件下叶轮内空泡分布规律及其叶片表面载荷分布.研究结果表明:设计流量工况下,叶轮内空泡随着装置空化余量的降低逐渐呈不对称性分布,当装置空化余量低至2.63 m时,个别流道发生了堵塞.叶轮不同切面上的空泡分布不一样,切面越靠近后盖板,叶片吸力面上空化区面积越大,扬程发生突降之前,泵叶轮内空化表现为准静态空穴的特征.由于主流方向在叶轮进口处发生了急剧变化,使得叶片压力面靠近叶片进口边处上叶片载荷出现了先突然增大然后又迅速降低的变化规律.  相似文献   

5.
应用剪切应力输运(SST)湍流模型和基于Rayleigh-Plesset方程的混合物均相流空化模型,求解雷诺时均Navier-Stokes方程,对某混流泵在设计工况时的流场进行数值模拟.根据计算结果获取了泵的扬程衰减曲线,捕捉到泵内空化的发生、发展过程,对轻微空化、临界空化和严重空化3种工况下叶轮内空泡体积分布特性做对比分析.模拟结果表明:该泵空化性能满足设计要求;叶轮内空泡最初发生在叶片吸力面进水边靠近轮缘处,该空泡区随汽蚀余量降低逐渐向轮毂方向和叶轮出口方向延伸;轮缘空泡初生于叶片进水边,沿着叶缘翼型逐渐发展成一条长带;轮毂空泡集中于叶根翼型尾部,轮毂空泡体积分数明显大于轮缘;叶片各通道间空泡分布相似,严重空化时空泡造成叶片通道严重阻塞致使泵扬程急剧下降.  相似文献   

6.
为了研究对旋轴流式喷水推进器内部空化特性,基于ANSYS-CFX软件,利用SST k-ω湍流模型和Zwart空化模型,对不同转速以及设计航速条件下喷水推进器进行全流域空化数值计算,得到了喷水推进器两级叶轮叶片以及叶轮流道内空泡体积分数分布情况.结果表明:在喷水推进器首级叶轮吸力面轮缘处最先发生空化,随着转速的增加,空泡不断地向叶轮轮毂处蔓延,并且体积分数逐渐增加;由于非均匀进流的影响,次级叶轮吸力面进口至出口中部低压区开始出现空泡;且受流动传递性的影响,次级叶轮处在靠近水平面下半叶轮通道内的叶片空化更为严重;在不同的NPSHr下,由于首级叶轮的预压,次级叶轮压力面一直没有空泡附着,表明对旋轴流式喷水推进器具有良好的抗空化性能.  相似文献   

7.
为研究混流式叶轮空化性能,基于空泡动力学理论和计算流体力学方法,对某混流泵进行设计工况下的汽液两相瞬态仿真计算。分析不同空化余量下叶轮内部空泡分布情况,探究空泡随时间的变化特点,捕捉空化初生、空化发展以及空泡溃灭的过程,寻求空泡含量的变化规律。结果表明,在叶轮叶片头部最先初生空化,随着空化的发展,空泡逐渐向叶片出口、叶片正背面、甚至叶轮流道扩散。若叶片空化达到一定的程度,则叶片背面空化区域远远大于正面,但体积组分大的空泡多集中于叶片正面靠近头部位置。叶轮内空泡含量随时间以近似指数的形式上升,其空化速度与空化余量成反比。当空化余量足够低时,空泡将迅速堵塞整个叶轮流道。  相似文献   

8.
基于混合多相流模型,不同的湍流模型及完整空化模型,对比转数为86的离心泵内部流道的空化流动进行了定常和非定常的数值模拟,预测了空化初生阶段、发展阶段和空化严重阶段叶轮流道内空泡分布的形态特征。利用高速摄像机和设计的可视化离心泵,对空泡形态特征和连续时间内的叶轮内空化流场的观察与分析,获得了叶轮旋转过程中相邻叶片流道中非定常空化流动的变化规律。结果表明:拍摄所得空泡形态特征随NPSH的变化规律与数值计算结果基本一致,验证了数值计算的有效性;当某一叶片背面上或某一叶片流道内出现严重空化时,紧跟其后的叶片背面上或叶片流道内空化现象会受到抑制,但在其工作面上会出现明显的空化区。  相似文献   

9.
为了改善离心泵的空化性能,提出将平衡孔位置移至靠近叶片背面的方法。采用RNG k-ε湍流模型和Zwart-Gerber-Belamri空化模型,对不同空化数下平衡孔偏移前后的模型空化流场进行了数值计算与分析,结果表明:与原模型泵试验值相比,平衡孔偏移后,扬程、效率均有所下降,扬程降低幅度在4%之内,效率降低幅度在5%以内;在1. 2Q_e、Q_e及0. 8Q_e流量下,平衡孔偏移后临界空化数均有所降低。平衡孔偏移改变了叶片背面静压低压区的分布,降低了叶片背面低压区流速,同时降低了流道内湍动能,提高了离心泵的空化性能;平衡孔偏移可以有效减小流道内空泡体积分数,改善叶轮流道内的流动条件,减弱空泡对流道的堵塞程度;平衡孔偏移后在一定程度上减小了轴向力,改善了离心泵受力状态。  相似文献   

10.
基于Rayleigh-Plesset空化模型和剪切应力输运湍流模型(SST),应用计算流体动力学(CFD)技术,对比转速ns=449的蜗壳式混流泵设计工况下的流场进行数值模拟.根据模拟结果获取了该泵的空化特性曲线,捕捉到混流泵内空化的发生和发展过程,对开始发生空化、临界空化和空化严重3种工况下叶轮内的空化现象进行分析.分析结果表明:该泵空化性能满足设计要求; 混流泵叶轮内的空化现象最初发生在叶轮流道内,随着净正吸头的降低,叶片背面靠近轮缘处开始出现空泡,该空化区域从轮缘向轮毂方向延伸.在空化严重时会造成叶轮流道的严重堵塞,导致混流泵扬程的下降.  相似文献   

11.
本文利用Navier-Stokes方程、RNG 湍流模型和欧拉-欧拉均相流模型,对轴流泵偏大流量工况下的空化流动进行了数值模拟。通过对计算结果进行分析,阐述了轴流泵各段中空泡的主要来源,有效预测了发生空化、空蚀的主要部件和区域,并揭示了叶片背面压力带和空化带的关系。对比计算扬程和效率确定了空化的发展阶段,对于保障轴流泵稳定运行有一定指导意义。  相似文献   

12.
为研究轴流泵内部的空化特性问题,选取一台比转数ns=700的高速潜水轴流泵作为研究对象,利用ANSYS CFX软件进行数值计算得到外特性曲线,发现在大流量工况下外特性计算结果与试验误差较大.利用Rayleigh-Plesset空化模型和SST湍流模型对潜水轴流泵进行空化定常模拟,求得各工况下泵的临界空化压力,通过分析进口压力和运行流量变化对潜水轴流泵空化体积分数的影响,结果发现:临界空化压力随流量及转速的提高而增大,设计工况的汽蚀余量为7.08 m,临界压力为73 kPa,当进口压力低于临界压力时,泵内将发生严重空化,空化位置主要集中在叶片吸力面的进口轮缘处以及叶片最大厚度前后流体产生分离的位置.由于整体压力都大于汽化压力,在叶片压力面没有空化气泡形成.在设计工况附近增大或者减小泵的运行流量都会导致空化现象的加剧.因此在实际工程应用中,通过增加轴流泵的进口压力,并调节运行流量稳定至设计值可有效抑制空化.  相似文献   

13.
为了研究轴流泵空化问题,利用CFX软件二次开发技术对湍流模型进行了修正,通过编写CCL语言实现了PANS模型中参数fk的动态定义,使其可以瞬时地根据当地网格条件和湍流长度尺度修改其值;利用修正后的湍流模型对轴流泵全流道进行空化数值计算,得出临界汽蚀余量为5.37 m,经试验可知实际临界汽蚀余量为5.68 m,两者误差是由试验条件及试验系统引起的,且在合理范围内,并通过拍摄空泡图验证了该湍流模型在轴流泵空化计算中的可靠性.分析数值计算结果,得出了不同工况下轴流泵的空化特性,随着汽蚀余量的减少,轴流泵叶轮内空泡体积分数变大,涡量变大,叶片表面压力和流速在空泡产生和溃灭的位置处发生相应波动;随着流量的增大,轴流泵临界汽蚀余量减少,空泡分布的整体量变大,叶轮内部湍动能值变大,湍流耗散变严重,与空化的发生溃灭有直接关系.  相似文献   

14.
为了提高鱼友好型设计造成的轴流泵汽蚀性能下降,通过实验对比验证了采用ANSYS CFX数值预测原型泵及鱼友好型泵汽蚀性能的可行性,得到经过鱼友好型设计后,原型泵许用空化余量(性能参数下降3%)数值计算结果由3.5 m增加到9 m,难以满足使用要求。通过分析鱼友好型泵的内部流场特性,揭示了轮毂处涡旋的产生机理以及叶片进口冲角过大的原因,由此设计出抑制涡旋产生、更加符合流动特性的叶片截面翼型,并修正部分设计参数。数值计算结果表明:优化后泵内部流场流动平稳,翼型头部液流过渡良好,没有局部速度增量产生,轮毂侧流动贴合叶片表面,在吸力面也没有产生涡旋,鱼友好型泵的装置许用空化余量预测值降低到3 m左右,完全满足原型泵的使用要求。  相似文献   

15.
不同载荷分布型式下轴流泵叶顶间隙流特性研究   总被引:1,自引:0,他引:1  
轴流泵叶顶泄漏流对水泵内外特性有重要影响,从控制叶片载荷角度建立了轮缘载荷分布型式与叶顶泄漏流的关系。基于三维反问题设计方法设计得到了具有前载、中载和后载3种典型轮缘载荷分布型式的轴流泵叶轮模型,采用三维湍流模拟技术研究了上述3种轮缘载荷分布型式对轴流泵叶顶泄漏流及其诱导的泄漏涡流动的影响。结果表明,相对于轮缘前载型叶轮和轮缘中载型叶轮,轮缘后载型叶轮可有效消除叶片进口附近低压区,有利于叶轮空化性能;小流量工况性能有所提高,有效抑制流量扬程曲线的驼峰现象;同时轮缘后载型叶轮具有更好的小流量工况压力脉动性能。  相似文献   

16.
轴流泵叶顶泄漏流对水泵内外特性有重要影响,从控制叶片载荷角度建立了轮缘载荷分布型式与叶顶泄漏流的关系。基于三维反问题设计方法设计得到了具有前载、中载和后载3种典型轮缘载荷分布型式的轴流泵叶轮模型,采用三维湍流模拟技术研究了上述3种轮缘载荷分布型式对轴流泵叶顶泄漏流及其诱导的泄漏涡流动的影响。结果表明,相对于轮缘前载型叶轮和轮缘中载型叶轮,轮缘后载型叶轮可有效消除叶片进口附近低压区,有利于叶轮空化性能;小流量工况性能有所提高,有效抑制流量扬程曲线的驼峰现象;同时轮缘后载型叶轮具有更好的小流量工况压力脉动性能。  相似文献   

17.
考虑空化与泥沙磨损的联合作用,采用SST k-ω湍流模型和ZGB空化模型,数值模拟研究不同空化程度下,轴流泵内涡量的变化过程。结果表明:涡量主要分布在叶片背面后部、出口边处以及叶片头部,工作面处涡量较小。相比清水而言,输送介质中含沙对叶轮和导叶内涡量的影响较大;随着粒径的增大,叶轮和导叶表面涡量随之增大,然而涡量的增大幅度不明显。低含沙量和小颗粒泥沙可以改善导叶内漩涡分布,减小漩涡强度。随着空化压力的降低,泵内涡量迅速增大,说明,粒径对泵内涡量的影响不大,含沙量和空化是引起涡量增大的主要原因。  相似文献   

18.
轴流泵内部的空化现象是影响叶轮能量转换,导致轴流泵扬程、效率等性能下降的重要原因.为了研究轴流泵内部的空化现象,以轴流泵TZX-700为研究对象,该型号轴流泵相较于一般的轴流泵无后置导叶.为了验证数值计算结果的准确性,对该卧式轴流泵分别进行了试验研究和数值模拟,试验曲线和数值计算曲线基本吻合.在设计工况和小流量工况下进行全流道数值模拟,对其空化特性曲线、叶片吸力面和压力面的静压分布以及空化体积分数分布进行分析.结果表明:当进口压力为101.325 kPa时,在叶片的吸力面就已经发生空化;在叶片压力面,当有效空化余量NPSHa下降到临界空化余量NPSHcr=7.79 m时,靠近进口边的叶顶处开始产生少量的空泡;随着NPSHa的下降,叶片表面的空化区域进一步增加,对叶轮内的流场产生明显的影响,导致扬程急剧下降;在同一轴流泵进口压力下,小流量工况下叶片表面的空化区域相较于设计流量工况进一步扩大,由靠近轮缘的进口边向出口边和叶根处发展,空化现象更为严重.  相似文献   

19.
基于CFD的轴流泵空化特性预测   总被引:3,自引:0,他引:3  
基于空泡动力学和汽液两相流理论,应用计算流体动力学(CFD)技术模拟了轴流泵在不同进口压力条件下(包含轴流泵中未发生空化和发生剧烈空化的多种情况)的流场,研究了随着空化发生、发展速度场及压力场变化过程,并对轴流泵能量特性、空化性能进行了预测.结果表明,在非空化条件下,CFD计算可较准确地预测水泵扬程等能量特性,预测值与试验值相差在2%以内;在空化条件下,CFD计算成功地捕获到了空化发生、发展过程;流场中空化发生直接影响叶轮叶片上的压力分布,进而影响水泵的扬程、轴功率等外特性;在发生空化条件下,导叶背面进水边靠近轮缘位置也会出现空化现象;在叶轮各个通道内空化区域分布相似,轴对称性明显,而导叶体内各个通道的空化区域分布差异大,呈明显的非轴对称分布,该非轴对称性的空化区域也是空化造成轴流泵不稳定运行的一个因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号