首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《广州化工》2021,49(7)
采用水热法和煅烧法相结合制备得到直接生长在泡沫镍上的网格状NiFe_2O_4纳米片阵列。采用X射线晶体衍射仪、扫描电子显微镜、透射电子显微镜等表征手段对其组成和结构进行表征并作为超级电容器电极进行测试。电化学性能测试结果表明,制得的NiFe_2O_4纳米片阵列结构电极具有较高的比电容和优异的电学性能。在电流密度为1 A·g~(-1)时,比电容量高达到722.05 F·g~(-1)。在电流密度为10 A·g~(-1)时,比电容为464.73 F·g~(-1),比电容量仍保持在1 A·g~(-1)时比电容量的64.36%。  相似文献   

2.
本文采用硬模板法和放电等离子烧结技术(SPS)制备出硼氮双掺杂的中空碳纳米球。碳球间相互连接形成三维网络结构,使其具有独特性质。该样品比表面积达到855 m~2·g~(-1),孔体积1.59 cm3·g~(-1),孔尺寸分布在3~6nm之间。相关的电化学测试显示,其在碱性条件下具有良好的电容性能、循环稳定性和电容保留率,在电流密度为1A·g~(-1)时比电容达到195F·g~(-1)。  相似文献   

3.
中空多孔碳因其低密度、大孔容、高比表面积以及优良的电导率,被视为一种理想的电负极材料。以纳米碳酸钙晶须为模板剂,负载聚多巴胺薄膜与氧化石墨烯,作为碳源与氮源,制备出晶须形中空多孔碳材料(Cw-GO),应用于锂离子电池负极。碳化过程中,碳酸钙晶须经高温分解释放出大量二氧化碳,刺破碳前体壳层,具有高效扩孔功能。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附-脱附仪对样品形貌和结构进行了表征,利用循环伏安(CV)、阻抗谱(EIS)、循环充放电(GCD)对样品进行电化学性能检测。结果表明,复合材料Cw-GO在500 mA·g~(-1)的电流密度下,其初始放电比容量可达到1185.9 mA·h·g~(-1),在循环200次后,比容量为921.8mA·h·g~(-1),库仑效率基本保持在99.4%,表现出优异的电化学性能。  相似文献   

4.
以壳聚糖为碳源和氮源,采用预碳化处理和KOH活化两步法制备了壳聚糖多孔碳材料,考察了活化剂KOH用量对电极材料形貌、结构以及电容性能的影响。结果表明:当KOH与预碳化壳聚糖质量比为0.6∶1时,制备的多孔碳材料KOH-CTS-0.6具有最优的电化学性能。KOH-CTS-0.6具有大比表面积(1 348 m~2·g~(-1)),含有丰富的N、O元素(2.9%N和7.4%O)。在电流密度为0.5 A·g~(-1)时,KOH-CTS-0.6的比电容为235.2 F·g~(-1),显示出优秀的倍率能力;在电流密度为10 A·g~(-1)的大电流时,其比电容依然高达178.6 F·g~(-1)。此外,该材料还具有良好的循环稳定性,500次循环后比电容保持率为94%。  相似文献   

5.
《广东化工》2021,48(2)
本文采集我国北亚热带北部地区的土壤作为制备酚醛树脂基碳材料的改性剂,研究表明,少量的土壤固相成分可达到显著增强碳材料的石墨化度和孔隙率的目的。当土壤中的固相组成与活化剂碳酸钾的质量比为0.5︰1时,合成的酚醛树脂基碳材料表现出由二维碳层交错构成三维多孔碳骨架,部分无定型的碳质结构转变为有序的石墨晶型,其比表面积和孔体积分别达到1947 m~2·g~(-1)和1.88 cm~3·g~(-1)。在KOH水系电解液中对其进行电化学性能测试,1 A·g~(-1)电流密度下比电容为226 F·g~(-1),表现出较好的倍率性能。  相似文献   

6.
电解液是超级电容器不可或缺的重要组成部分,水系电解液由于导电率高、安全性好且成本低而被广泛使用。本文以商品化碳分子筛为前驱体,采用KOH活化法制备了一种多孔碳材料AMS,并研究了其在KOH、K_2SO_4、KNO_3、NaNO_3、LiNO_3、KCl等6种水系电解液中的电化学性能。 AMS在KOH电解液中具有108 F·g~(-1)的高比容量,在5 A·g~(-1)的高电流密度下比电容为85 F·g~(-1),电容保持率为78%。发现电解质水合离子尺寸、离子电导率是影响AMS在水系电解液中电容性能的主要因素,水合离子尺寸越小、电解质离子导电性越大,电极材料更容易获得优异的电容性能。  相似文献   

7.
以生物质秸秆为碳源,利用水热结合KOH活化法制备了多孔碳材料,对其结构与形貌进行了表征。采用三电极体系,在不同浓度的Li_2SO_4电解液中,对多孔碳电极进行循环伏安、恒电流充放电和交流阻抗测试。结果表明,在0.5 mol·L~(-1)的Li_2SO_4电解液中,秸秆基生物质碳材料呈现出较好的电化学性能。当电流密度为0.5 A·g~(-1)时,比电容可达224 F·g~(-1);经1500次充放电测试后,比电容保持率高达94.1%,循环性能良好。  相似文献   

8.
刘莹莹  陈爱英 《广州化工》2020,48(10):44-47
采用GO模板法制备ZnO、NiO、Co_3O_4超薄纳米片,选用三维多孔泡沫镍作(NF)为导电基材,并通过一步水热法制备出ZnO/NF、NiO/NF、Co_3O_4/NF复合电极材料,探究三种纳米片材料对复合材料的结构和电化学性能的影响,Co_3O_4/NF复合电极材料,因其具备高度开放的多孔结构,增加了与电解液的接触面积,为氧化还原反应提供了有利的条件,在电流密度为3 A·g~(-1)时,质量比电容高达2633 F·g~(-1),因此,Co_3O_4/NF复合电极材料的电容性能最好。  相似文献   

9.
《辽宁化工》2021,50(7)
氮掺杂多孔炭材料作为电荷存储和电子传输载体,在储能、催化等领域有重要应用,已成为炭材料领域的研究热点之一。通过煤沥青分子结构设计,引入具有亲水性羧基官能团,利用羧基与氮原子配位作用,成功制备了不同微观结构和表面形貌特征的氮掺杂炭材料。实验研究表明,氮掺杂多孔炭材料氮的质量分数为4.99%,氮的化学键合态以石墨氮(N-Q)和吡啶氮(N-6)为主,占比为72.9%。氮原子的引入,显著提升炭材料的电化学性能。在1A·g~(-1)电流密度下,电极材料的比容量为371.6 F·g~(-1),当电流密度增加到10 A·g~(-1)时,比容量为269 F·g~(-1),容量保持率为72.4%。  相似文献   

10.
分级多孔碳在电化学储能方面展现了巨大的潜力。模板与活化法相耦合是制备分级多孔碳最有效的方法之一。然而,该方法使用强酸和强碱,对环境造成污染。因此,开发一种无酸无碱制备分级多孔碳的方法迫在眉睫。以氯化钠和碳酸钠混合盐为模板,煤沥青为碳前体,碳酸钾为活化剂,合成了氮掺杂分级多孔碳纳米片(NHCNs)。模板与活化剂可以通过水洗除去,无需使用强酸和强碱,该工作为合成分级多孔碳纳米片提供了一种无酸无碱的技术。合成的NHCNs具有大的比表面积(1597 m2·g-1)、丰富的微/中孔、适量的氧和氮杂原子。这些独特结构赋予NHCNs电极优异的超级电容性能。在KOH电解液中,NHCNs电极显示了高的比电容和好的循环稳定性。  相似文献   

11.
以聚甲基丙烯酸甲酯(PMMA)作为胶晶模板,溶胶凝胶法辅助制备出三维有序大孔Ni-Co-Mn混合金属氧化物作为锂离子电池负极材料.与相同组份的纳米颗粒相比,三维有序大孔材料具有大幅度提高的电化学性能.三维有序大孔材料具有高达1530 mAh·g-1的可逆容量,在1000 mA·g-1的电流密度下纳米颗粒材料的放电比容量仅为328 mAh·g-1,而多孔材料的放电比容量为876 mAh·g-1,比纳米颗粒材料提高了1.7倍;在100 mA·g-1电流密度下循环100圈之后多孔材料的容量保持率几乎接近100%,而纳米颗粒材料仅为42%.这些结果表明,三维有序大孔结构Ni-Co-Mn混合金属氧化物具有较高的容量和优异的循环性能.  相似文献   

12.
《辽宁化工》2021,50(1)
超级电容器(SCs)以其功率密度高、寿命长、生态友好、成本低等显著特点受到研究者的广泛关注。然而,能量密度仍然较低,限制了其进一步的应用。因此,选择具有高比电容的电极材料是提高超级电容器电化学性能的重要方法之一。采用简易的一步水热法成功地制备出过渡金属碳酸氢盐Ni(HCO_3)_2电极材料。经实验证明,该材料具有良好的电化学性能,在电流密度为1A·g~(-1)时具有较高的比电容2056F·g~(-1),且当用10A·g~(-1)的电流密度进行测试时比电容仍有1292F·g~(-1),说明Ni(HCO_3)_2材料具有良好的倍率性能。此外,在5 A·g~(-1)电流密度下循环2 000圈后仍然具有93%的比容量保持率,具有良好的循环稳定性。  相似文献   

13.
MnO_2具有低成本、无毒性、高天然丰度和优异的理论比电容等优点,被认为是一种极具前景的超级电容器(SC)电极材料。赝电容电极材料MnO_2仍然存在导电性差以及充放电过程中易剥落的问题。本文利用恒电流沉积的方法在硝酸预氧化处理的碳纸表面制备了一种MnO_2/CNTs/MnO_2复合电极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和氮吸附测试证明,所制备的复合材料具有一种三明治状的夹层结构,同时富含5 nm左右的介孔,介孔结构能够保证电解液离子的高效传输。采用三维立体的碳纸能够为MnO_2提供丰富的附着位点,而电沉积法合成的α-MnO_2生长在有效的导电位点上,具有蓬松多孔的形貌,在MnO_2发生膨胀/收缩过程中,这种海绵状形貌可以有效降低材料受到的膨胀应力。中间层碳纳米管(CNTs)相互搭接于内外两层MnO_2之间,作为一种导电中继,提高了复合材料的导电性。该复合材料具有优异的电化学性能:在0.1 A·g~(-1)的电流密度下,能够获得428.8 F·g~(-1)的可逆比电容,并在5 A·g~(-1)的高电流密度下仍能具有80%的电容保持率。同时,电极表现出优异的循环稳定性,在1 A·g~(-1)循环6000次之后比电容仅衰减5%。  相似文献   

14.
以土豆为碳源,乙二胺为氮源,氢氧化钾为活化剂制备具有微孔结构高比表面积氮掺杂活性炭。通过N_2物理吸附、扫描电镜、透射电镜、拉曼光谱和元素分析研究活性炭比表面积、孔结构、形貌及元素组成,并测试其电化学性能。结果表明,当碱碳质量比为5∶1时(NC600-800-5),活性炭材料比表面积最高2 440 m~2·g~(-1)、孔容最大1.07 cm~3·g~(-1)、孔径最大0.82 nm和1.80 nm。电流密度1 A·g~(-1)时比电容可达370 F·g~(-1),经3 000次循环充放电后,比电容保持率为95.2%。  相似文献   

15.
采用水热法,通过控制反应时间制备出不同形貌和尺寸的Co_3O_4材料。利用XRD和SEM对其结构和形貌进行表征,采用循环伏安、恒电流充放电和交流阻抗等方法测试了其电化学性能。结果表明,随着反应时间的延长, Co_3O_4材料的晶粒尺寸增大,形貌由不规则颗粒状变为正立方体,其比电容不断降低。在电流密度为0.2 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为153.3 F·g~(-1)、 99.3F·g~(-1)和51.1 F·g~(-1)。当电流密度从0.2 A·g~(-1)增大到1.8 A·g~(-1)时,反应5 h、 10 h和15 h所制备的Co_3O_4材料的比电容值分别为96.3 F·g~(-1)、 91.3 F·g~(-1)和27.1 F·g~(-1),其比电容保持率分别为62.8%、 91.9%和53.0%。水热反应5 h所制备的Co_3O_4材料具有最好的比电容。  相似文献   

16.
本文研究制备一种CoNiO_2/碳纳米复合材料的方法。采用X-射线粉末衍射仪(XRD)和场发射电子显微镜(FESEM)表征产物的相结构与形貌,结果表明获得了CoNiO_2/碳纳米复合材料。复合材料的电化学性能采用循环伏安法(CV)和单电极充放电测试。将复合材料、活性炭(AC)和PVA-KOH电解质膜组装成不对称超级电容器,电性能测试结果表明在充放电电流密度为12 mA·cm~(-2)下其比电容最高达670 F·g~(-1)并稳定保持2000个循环;经过16000次循环后,其比电容仍有482.79 F·g~(-1),显示出高的比电容和长的循环稳定性。  相似文献   

17.
以法国梧桐絮为原料、KOH为活化剂,通过碳化制备多孔纤维碳材料,并在此基础上组装了超级电容器器件。通过SEM、EDS、XRD、Raman、FTIR、BET等对制备的多孔纤维碳材料进行表征,并研究了多孔纤维碳材料电极的电化学性能。结果表明:在扫描速率为50 mV·s~(-1)时,800℃下碳化制备的梧桐絮多孔纤维碳材料电极的比电容可以达到236 F·g~(-1);所组装电极在循环10 000次后,比电容仍维持原来的99.8%,表明梧桐絮多孔纤维碳材料在超级电容器领域有巨大的应用潜力。  相似文献   

18.
采用脉冲电沉积一步合成得到石墨烯/聚苯胺(PANI)复合材料,通过SEM和XRD对材料的形貌和结构进行了表征,复合材料中聚苯胺为翠绿亚胺态,呈纤维状形貌。将所得石墨烯/PANI复合材料用作超级电容器电极进行电化学性能测试,比纯聚苯胺表现出更优异的超电容性能。电流密度为0.5A·g~(-1)时,石墨烯/PANI的比容量可达703F·g~(-1),且具有良好的倍率性能。  相似文献   

19.
分别以碳球和葡萄糖为模板剂,采用水热法制备不同形貌的纳米V_2O_5,另外在水热过程直接加入碳纳米管(CNT)和石墨烯(Gr)原位合成CNT/Gr/V_2O_5纳米复合材料。结果表明:碳球和葡萄糖均有还原剂的作用,以碳球为模板制备的试样颗粒呈多层的方玫瑰花状,其在2 mV/s下的比电容达170 F/g;以葡萄糖为模板剂制备的试样呈多孔空心球状,在2 mV/s下的比电容达324 F/g。当葡萄糖浓度为1 mol/L时,原位合成的CNT/Gr/V_2O_5纳米复合材料比表面积高达382.7 m~2·g~(–1),在2 mV/s下的比电容达274 F/g,呈现出良好的电化学性能。  相似文献   

20.
针对炭材料和金属氧化物单独作为电极材料存在的不足,以纳米炭纤维作为基底,通过水热法在纳米炭纤维上同时负载炭黑(CB)和钴酸镍(NiCo_2O_4)纳米线,进一步热处理制备了NiCo_2O_4/炭黑@纳米炭纤维自支撑复合电极。在复合电极材料中,纳米炭纤维网络提供了三维电子传导通道,钴酸镍提供了较高的比电容,炭黑显著地提高了NiCo_2O_4的导电性。通过调整沉积时间有效调节了活性物质的负载量,所得电极显示出优异的导电性(35.3 S·m~(-1)),在1 A·g~(-1)的电流密度下比电容达到846 F·g~(-1),且具有优良的循环稳定性。优异的电容性能使NiCo_2O_4/炭黑@纳米炭纤维复合电极有望成为下一代超级电容器的电极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号