首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
A normal form augmentation approach to adaptive control of space robot systems   总被引:33,自引:0,他引:33  
In this paper, we model a free-floating space robot system as anextended robot which is composed of a pseudo-arm representing the base motion resulting from six hyperthetic passive joints, and a real robot arm. The model allows us to categorize the space robot as an under-actuated system, and reveal fundamental properties of the system. Through input-output linearization of the model, we demonstrate a non-trivial internal dynamics, and propose an adaptive control scheme based on a normal form augmentation approach. This approach overcomes two fundamental difficulties in adaptive control design of space robot systems, i.e., nonlinear parameterization of the dynamic equation, and uncertainty of kinematic mapping from Cartesian space to joint space.  相似文献   

2.
空间机器人的动力学等价机械臂   总被引:8,自引:0,他引:8  
讨论了如何将一个自由飘浮空间机器人(SM)等价成一个通常固定基座上的机器 人,将其定义为动力学等价机械臂(DEM),并阐述了DEM与SM运动学与动力学的等价性. 通过仿真验证了在闭环控制下DEM与SM的等价性.  相似文献   

3.
This paper aims to formulate and investigate the application of various nonlinear H control methods to a free-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator.  相似文献   

4.
讨论了载体位置不受控制的漂浮基空间机械臂本体与末端抓手协调运动的自适应控制问题. 对系统的运动学、动力学分析表明, 结合系统动量守恒关系得到的系统动力学方程及协调运动的增广广义Jacobi矩阵可以表示为适当选择的组合惯性参数的线性函数. 以此为基础, 对于系统存在未知参数的情况, 设计了本体姿态与机械臂末端抓手惯性空间轨迹协调运动的自适应控制方案. 上述控制方案的显著优点在于: 不需要测量、反馈飞行器本体的位置、移动速度及移动加速度. 仿真运算, 证实了上述控制方案的有效性.  相似文献   

5.
Most research so far on trajectory tracking of free-floating space manipulators has assumed that the kinematics of the space manipulator is exactly known. However, when a space manipulator picks up different tools of unknown lengths or unknown gripping points, its kinematics and dynamics change and are difficult to derive exactly. Thus, in this paper, we have proposed a passivity based adaptive Jacobian controller for free-floating space manipulators. The proposed controller consists of a transposed Jacobian feedback and a dynamic compensation term, and the parameter adaptation laws are derived by Lyapunov-like stability analysis tools. It is shown that the end-effector motion tracking errors converge asymptotically. To avoid using spacecraft acceleration, we define a new reference velocity, which is called spacecraft reference velocity. In addition, we have also conducted passivity interpretation of the proposed controller to obtain some physical insight into its properties. Simulation results are presented to show the performance of the proposed controller.  相似文献   

6.
This paper is devoted to investigating the recursive implementation schemes of adaptive control for free-floating space manipulators. Using spatial vector tool and some physical properties that free-floating space manipulators enjoy, we establish a general framework on the seeking of the centripetal and Coriolis matrix that satisfies the skew symmetry requirement. Under this general framework, we propose a recursive adaptive algorithm for free-floating manipulators, which is composed of two parts: the first part is the recursive derivation of the required manipulator control torques, and the second part is the recursive updating of the spacecraft reference velocity and acceleration. To guarantee the uniform positive definiteness of the estimated spacecraft inertia, we present a parameter projection algorithm to project the estimated parameters into some pre-specified parameter region. In the next, we extend the proposed recursive adaptive algorithm to task-space control of free-floating space manipulators. We examine the performance of the proposed recursive adaptive algorithms via numerical simulation on a six-DOF space manipulator.  相似文献   

7.
参数不确定空间机械臂系统的鲁棒自适应混合控制   总被引:11,自引:0,他引:11  
讨论了载体位置与姿态均不受控制的漂浮基空间机械臂系统的控制问题.对系统运动学、动力学的分析结果表明,结合系统动量守恒及动量矩守恒关系得到的系统广义Jacobi关系以及系统的动力学方程是系统惯性参数的非线性函数.证明了借助于增广变量法可以将系统的增广广义Jacobi矩阵及系统动力学方程表示为一组适当选择的(组合)惯性参数的线性函数.以此为基础,针对系统惯性参数不确定的情况,设计了空间机械臂末端抓手跟踪惯性空间期望轨迹的鲁棒自适应混合控制方案.仿真运算结果证实了方法的有效性.  相似文献   

8.
《Advanced Robotics》2013,27(9):943-959
An adaptive control scheme is proposed for the end-effector trajectory tracking control of free-floating space robots. In order to cope with the nonlinear parameterization problem of the dynamic model of the free-floating space robot system, the system is modeled as an extended robot which is composed of a pseudo-arm representing the base motions and a real robot arm. An on-line estimation of the unknown parameters along with a computed-torque controller is used to track the desired trajectory. The proposed control scheme does not require measurement of the accelerations of the base and the real robot arm. A two-link planar space robot system is simulated to illustrate the validity and effectiveness of the proposed control scheme.  相似文献   

9.
《Advanced Robotics》2013,27(4):451-476
In this paper, the non-holonomic characteristic of a free-floating space robotic system is used to plan the path of the manipulator joints, by whose motion the base attitude and the manipulator joints attain the desired states. Here, we parameterize the joint trajectory using sinusoidal functions, whose arguments are high-order polynomials. Then, we define the cost function for optimization according to the constraint conditions and the accuracy of the space robot. Finally, genetic algorithms (GAs) are used to search for the solutions of the parameters. Compared with others, our approach has advantages as follows. (i) The motion of the manipulator and the disturbance on the base are practically constrained. (ii) The dynamic singularities cannot affect the algorithm since only the direct kinematic equations are utilized. (iii) The planned path is smooth and more applicable for the control of the manipulator. (iv) The convergence of the algorithm is not affected by the attitude singularity since the orientation error is represented by quaternion, which is globally singularity-free. The simulation results of the spacecraft with a 6-d.o.f. manipulator verify the performance and the validity of the proposed method.  相似文献   

10.
This paper presents a new adaptive controller for image-based dynamic control of a robot manipulator using a fixed camera whose intrinsic and extrinsic parameters are not known. To map the visual signals onto the joints of the robot manipulator, this paper proposes a depth-independent interaction matrix, which differs from the traditional interaction matrix in that it does not depend on the depths of the feature points. Using the depth-independent interaction matrix makes the unknown camera parameters appear linearly in the closed-loop dynamics so that a new algorithm is developed to estimate their values on-line. This adaptive algorithm combines the Slotine-Li method with on-line minimization of the errors between the real and estimated projections of the feature points on the image plane. Based on the nonlinear robot dynamics, we prove asymptotic convergence of the image errors to zero by the Lyapunov theory. Experiments have been conducted to verify the performance of the proposed controller. The results demonstrated good convergence of the image errors.  相似文献   

11.
In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.  相似文献   

12.
柔性臂漂浮基空间机器人建模与轨迹跟踪控制   总被引:23,自引:0,他引:23  
洪在地  贠超  陈力 《机器人》2007,29(1):92-96
利用拉格朗日法和假设模态方法建立了末端柔性的两臂漂浮基空间机器人的非线性动力学方程.通过坐标变换,推导出一种新的以可测关节角为变量的全局动态模型,并在此基础上运用基于模型的非线性解耦反馈控制方法得到关节相对转角与柔性臂的弹性变形部分解耦形式控制方程.最后,讨论了柔性臂漂浮基空间机器人的轨迹跟踪问题,并通过仿真实例计算,表明该模型转换及控制方法对于柔性臂漂浮基空间机器人末端轨迹跟踪控制的有效性.  相似文献   

13.
陈力  刘延柱 《机器人》1999,21(6):401-406
本文讨论了载体位置与姿态均不受控制的漂浮基两杆空间机械臂系统的逆运动学问题 ,推导了系统的运动学、动力学方程.分析表明,结合系统动量守恒及动量矩守恒关系得到 的系统广义Jacobi关系为系统惯性参数的非线性函数.本文证明了,借助于增广变量法可以 将增广广义Jacobi矩阵表示为一组适当选择的惯性参数的线性函数.并在此基础上,给出了 系统参数未知时由空间机械臂末端惯性空间期望轨迹产生机械臂关节铰期望角速度、角加速 度的增广自适应控制算法.仿真运算,证实了方法的有效性.  相似文献   

14.
Presents an approach to the design and real-time implementation of an adaptive controller for a robotic manipulator based on digital signal processors. The Texas Instruments DSP (TMS320C31) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for robotic manipulators. In the proposed scheme, adaptation laws are derived from the direct model reference adaptive control principle based on the improved Lyapunov second method. The proposed adaptive controller consists of an adaptive feedforward and feedback controller and PI-type time-varying auxiliary control elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for an industrial robot with four joints in the joint space and Cartesian space  相似文献   

15.
This paper presents a unified motion controller for mobile manipulators which not only solves the problems of point stabilization and trajectory tracking but also the path following problem. The control problem is solved based on the kinematic model of the robot. Then, a dynamic compensation is considered based on a dynamic model with inputs being the reference velocities to the mobile platform and the manipulator joints. An adaptive controller for on-line updating the robot dynamics is also proposed. Stability and robustness of the complete control system are proved through the Lyapunov method. The performance of the proposed controller is shown through real experiments.  相似文献   

16.
艾海平  陈力 《控制与决策》2021,36(2):355-362
讨论空间机器人在轨捕获非合作航天器过程避免关节受冲击力矩破坏的避撞柔顺控制问题.在机械臂与关节电机之间配置一种弹簧类柔顺装置—–旋转型串联弹性执行器(RSEA),其作用在于:1)在捕获碰撞阶段,可通过其内置弹簧的变形吸收碰撞产生的能量;2)在镇定运动阶段,结合避撞柔顺策略适时开、关电机,以保证关节所受冲击力矩受限在安全...  相似文献   

17.
This paper deals with the dynamics and control of a novel 3-degrees-of-freedom (DOF) parallel manipulator with actuation redundancy. According to the kinematics of the redundant manipulator, the inverse dynamic equation is formulated in the task space by using the Lagrangian formalism, and the driving force is optimized by utilizing the minimal 2-norm method. Based on the dynamic model, a synchronized sliding mode control scheme based on contour error is proposed to implement accurate motion tracking control. Additionally, an adaptive method is introduced to approximate the lumped uncertainty of the system and provide a chattering-free control. The simulation results indicate the effectiveness of the proposed approaches and demonstrate the satisfactory tracking performance compared to the conventional controller in the presence of the parameter uncertainties and un-modelled dynamics for the motion control of manipulators.  相似文献   

18.
讨论了载体位置无控、姿态受控情况下,具有外部扰动的漂浮基柔性空间机械臂载体姿态与各关节协调运动的控制问题.基于假想模态法、系统动量守恒关系及拉格朗日方法,建立了漂浮基柔性空间机械臂系统的动力学方程,并将其转化为系统控制状态方程.以此为基础,根据Terminal滑模控制技术,给出了系统相关Terminal滑模面的数学表达式,在此基础上提出了具有外部扰动情况下漂浮基柔性空间机械臂载体姿态与各关节协调运动的Terminal滑模控制方案.提出的控制方案不但确保了闭环系统滑模阶段的存在性,同时通过Terminal滑模函数的适当选取,还保证了输出误差在有限时间内的收敛性.此外,由于确保了无论何种情况下系统初始状态均在Terminal滑模面上,从而消除了其它滑模控制方法常有的到达阶段,使得闭环系统具有全局鲁棒和稳定性.一个平面两杆漂浮基柔性空间机械臂的系统数值仿真,证实了方法的有效性.  相似文献   

19.
This paper introduces a robust adaptive control scheme for an underactuated free-flying space robot under non-holonomic constraints. An underactuated robot manipulator is defined as a robot that has fewer joint actuators than the number of total joints. Because, if one of the joints is out of order, it is so hard to repair the joint, especially in space, the control of such a robot manipulator is important. However, it is difficult to control an underactuated robot manipulator because of the reduced dimension of the input space, i.e. the non-holonomic structure of the underactuated system. The proposed scheme does not need to assume that the exact dynamic parameters must be known. It is analysed in joint space to control the underactuated robot mounted on the space station under parametric uncertainties and external disturbances. The simulation results have shown that the proposed method is very feasible and robust for a two-link planar free-flying space robot with one passive joint.  相似文献   

20.
This paper is devoted to the investigation of adaptive inverse dynamics for free-floating space manipulators (FFSMs) suffering from parameter uncertainties/variations. To overcome the nonlinear parametric problem of the dynamics of FFSMs, we introduce a new regressor matrix called the generalized dynamic regressor. Based on this regressor, and with Lyapunov stability analysis tools, we obtain a new parameter adaptation law and show that the closed-loop system is stable, and that the joint tracking errors converge asymptotically to zero. Simulation results are provided to illustrate the performance of the proposed adaptive algorithm. Furthermore, we conduct a comparative study between adaptive inverse dynamics, prediction error based adaptation, and passivity based adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号