首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In hot climates where quality of milk is difficult to control, a lactoperoxidase (LP) system can be applied in combination with conventional preservation treatments at sub-lethal levels to inhibit pathogenic microbes. This study investigated the effect of combined heat treatments (55 °C, 60 °C and 72 °C) and milk acidification (pH 5.0) on survival of acid-adapted and non-adapted Escherichia coli O157:H7 strains UP10 and 1062 in activated LP goat milk. Heat treatment at 72 °C eliminated E. coli O157:H7. Acid-adapted strains UP10 and 1062 cells showed resistance to combined LP and heat at 60 °C in fresh milk. The inhibition of acid-adapted and non-adapted E. coli O157:H7 in milk following combined LP-activation, heat (60 °C) and milk acidification (pH 5.0) suggests that these treatments can be applied to reduce E. coli O157:H7 cells in milk when they occur at low numbers (<5 log10 cfu mL?1) but does not eliminate E. coli O157:H7 to produce a safe product.  相似文献   

2.
Effectiveness of multiple chemical sanitizers on the reduction of Salmonella spp. and Escherichia coli O157:H7 on spinach was compared. Fresh spinach (Spinacia oleracea) was inoculated with a bacterial suspension containing multiple strains of rifampin-resistant Salmonella and E. coli O157:H7. Inoculated spinach leaves were treated with a water wash or water wash followed by 2% L-lactic acid at 55 °C, peroxyacetic acid (80 mg/L), calcium hypochlorite (200 mg/L), ozonated water (mg/L) or ClO2 gas (1.2 or 2.1 mg/L). The l-lactic acid produced a 2.7 log CFU/g reduction for E. coli O157:H7 and a 2.3 log CFU/g reduction for Salmonella, statistically significant compared to water wash alone (P < 0.05), which resulted in a reduction of 0.7 log CFU/g for both pathogens. These findings indicate that 2% l-lactic acid at 55 °C may be an effective treatment for reducing pathogens on spinach leaves.  相似文献   

3.
《Food microbiology》2004,21(5):493-499
The pathogen thermal lethality in ground and formulated beef/turkey was evaluated for a cocktail of E. coli O157:H7, Salmonella, and Listeria monocytogenes, respectively. At a temperature range of 55–70°C, the heat resistance of L. monocytogenes was not significantly (at α=0.05) different from those of Salmonella. The heat resistance of L. monocytogenes at 55–70°C was 45–81% higher than that of E. coli O157:H7. In this study, a practical approach was developed to predict log10(CFU/g) reduction of E. coli O157:H7, Salmonella, or L. monocytogenes in ground, formulated, and formed beef/turkey links that were cooked in an air impingement oven. The predictions of pathogen thermal kills in the links were verified via the inoculation studies for at least a 7 log10(CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.  相似文献   

4.
The antimicrobial activity of two pediocin-producing transformants obtained from wild strains of Lactococcus lactis on the survival of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 during cheese ripening was investigated. Cheeses were manufactured from milk inoculated with the three pathogens, each at approximately 6 log cfu mL−1. Pediococcus acidilactici 347 (Ped+), Lc. lactis ESI 153, Lc. lactis ESI 515 (Nis+) and their respective pediocin-producing transformants Lc. lactis CL1 (Ped+) and Lc. lactis CL2 (Nis+, Ped+) were added at 1% as adjuncts to the starter culture. After 30 d, L. monocytogenes, S. aureus and E. coli O157:H7 counts were 5.30, 5.16 and 4.14 log cfu g−1 in control cheese made without adjunct culture. On day 30, pediocin-producing derivatives Lc. lactis CL1 and Lc. lactis CL2 lowered L. monocytogenes counts by 2.97 and 1.64 log units, S. aureus by 0.98 and 0.40 log units, and E. coli O157:H7 by 0.84 and 1.69 log units with respect to control cheese. All cheeses made with nisin-producing LAB exhibited bacteriocin activity throughout ripening. Pediocin activity was only detected throughout the whole ripening period in cheese with Lc. lactis CL1. Because of the antimicrobial activity of pediocin PA-1, its production in situ by strains of LAB growing efficiently in milk would extend the application of this bacteriocin in cheese manufacture.  相似文献   

5.
A novel surface plasmon resonance (SPR) biosensor using lectin as bioreceptor was developed for the rapid detection of Escherichia coli (E. coli) O157:H7. The selective interaction of lectins with carbohydrate components from bacterial cells surface was used as the recognition principle for the detection. Five types of lectins from Triticum vulgaris, Canavailia ensiformis, Ulex europaeus, Arachis hypogaea, and Maackia amurensis, were employed to evaluate the selectivity of the approach for binding E. coli O157:H7 effectively. A detection limit of 3 × 103 cfu mL?1 was obtained for determination of E. coli O157:H7 when used the lectin from T. vulgaris as the binding molecule. Furthermore, the proposed biosensor was used to detect E. coli O157:H7 in real food samples. Results showed that the lectin based SPR biosensor was sensitive, reliable and effective for detection of E. coli O157:H7, which hold a great promise in food safety analysis.  相似文献   

6.
This study investigated the inactivation of Escherichia coli O157:H7, Salmonella and murine norovirus (MNV-1), a human norovirus surrogate, on strawberries and raspberries using a water-assisted pulsed light (WPL) treatment. The effects of combinations of WPL treatment with 1% hydrogen peroxide (H2O2) or 100 ppm sodium dodecyl sulfate (SDS) were also evaluated. Strawberries and raspberries were inoculated with E. coli O157:H7 and treated by WPL for 5–60 s. E. coli O157:H7 on both strawberries and raspberries was significantly reduced in a time-dependent manner with 60-s WPL treatments reducing E. coli O157:H7 by 2.4 and 4.5 log CFU/g, respectively. Significantly higher reductions of E. coli O157:H7 were obtained using 60-s WPL treatment than washing with 10 ppm chlorine. Compared with washing with chlorine, SDS and H2O2, the combination of WPL treatment with 1% H2O2 for 60 s showed significantly higher efficacy by reducing E. coli O157:H7 on strawberries and raspberries by 3.3- and 5.3-log units, respectively. Similarly, Salmonella on strawberries and raspberries was inactivated by 2.8- and 4.9-log units after 60-s WPL–H2O2 treatments. For decontamination of MNV-1, a 60-s WPL treatment reduced the viral titers on strawberries and raspberries by 1.8- and 3.6-log units, respectively and the combination of WPL and H2O2 did not enhance the treatment efficiency. These results demonstrated that the WPL treatment can be a promising chemical-free alternative to chlorine washing for decontamination of berries destined for fresh-cut and frozen berry products. WPL–H2O2 treatment was the most effective treatment in our study for decontamination of bacterial pathogens on berries, providing an enhanced degree of microbiological safety for berries.  相似文献   

7.
《Food microbiology》2005,22(1):63-70
Many foodborne outbreaks of enterohemorrhagic Escherichia coli O157:H7 infection have been associated with the consumption of contaminated vegetables. On-farm contaminations through contaminated manure or irrigation water application were considered likely sources of the pathogen for several outbreaks. Field studies were done to determine the survival of E. coli O157:H7 on two subterranean crops (carrots and onions), and in soil fertilized with contaminated manure compost or irrigated with contaminated water. Three different types of composts, PM-5 (poultry manure compost), 338 (dairy manure compost) and NVIRO-4 (alkaline stabilized dairy manure compost), and irrigation water were inoculated with an avirulent strain of E. coli O157:H7 at 107 cfu g−1 and 105 cfu ml−1, respectively. A split-plot block design plan was used for each crop, with five treatments (one without compost, three with each of the three composts, and one without compost but with contaminated irrigation water applied) and five replicates for a total of 25 plots, each measuring 1.8×4.6 m2, for each crop. Composts were applied to soil as a strip at a rate of 4.5 metric tons ha−1 before carrots and onions were sown. Contaminated irrigation water was sprayed once on the vegetables at the rate of 2 l per plot for this treatment 3 weeks after carrots and onions were sown. E. coli O157:H7 survived in soil samples for 154–196 days, and was detected for 74 and 168 days on onions and carrots, respectively. E. coli O157:H7 survival was greatest in soil amended with poultry compost and least in soil containing alkaline-stabilized dairy manure compost. Survival profiles of E. coli O157:H7 on vegetables and soil samples, contaminated either by application of contaminated compost or irrigation water, were similar. Hence, preharvest contamination of carrots and onions with E. coli O157:H7 for several months can occur through both contaminated manure compost and irrigation water.  相似文献   

8.
《Food microbiology》2005,22(5):415-421
This study investigated the growth and survival of Escherichia coli O157:H7 on minced and whole pieces of bison meat. Growth curves of native microflora, including Pseudomonas spp. and Enterobacteriaceae were also generated. A marked E. coli O157:H7 strain was inoculated onto minced and whole pieces of bison meat at an initial level of 1.5 log10 cfu g−1. The inoculated meat was stored at either 5 °C for 28 days or 10 °C for 21 days. Survival, but no growth, of E. coli O157:H7 was observed on both forms of bison meat stored at 5 °C, while significant growth of the organism was observed at 10 °C. E. coli O157:H7 counts on whole pieces were generally higher than counts observed on minced bison meat, and reached their highest population by 14 days, with a total increase of 3.36 log10 cfu g−1 on whole pieces and 2.12 log10 cfu g−1on minced bison meat stored at 10 °C. Under the same storage temperature, Pseudomonas spp. and total counts displayed similar growth patterns on both pieces and minced bison meat, while the Enterobacteriaceae showed a slower growth rate. This study showed that the growth of E. coli O157:H7 on bison meat is similar to that observed in studies of beef.  相似文献   

9.
High pressure–low temperature (HPLT) processing was investigated to achieve Escherichia coli O157:H7 inactivation in non-intact, whole muscle beef while maintaining acceptable quality characteristics. Beef semitendinosus was internally inoculated with a four strain E. coli O157:H7 cocktail and frozen to − 35 °C, then subjected to 551 MPa for 4 min (HPLT). Compared to frozen, untreated control (F), HPLT reduced microbial population by 1.7 log colony forming units (CFU)/g on selective media and 1.4 log on non-selective media. High pressure without freezing (551 MPa/4 min/3 °C) increased pH and lightness while decreasing redness, cook yield, tenderness, and protein solubility. Aside from a 4% decrease in cook yield, HPLT, had no significant effects on quality parameters. It was demonstrated that HPLT treatment reduces internalized E. coli O157:H7 with minimal effect on quality factors, meaning it may have a potential role in reducing the risk associated with non-intact red meat.Industrial relevanceIn the current work, high pressure (551 MPa, 4 min) was applied to beef semitendinosus while it was at subfreezing temperatures (<− 30 °C). Most studies utilizing this high pressure–low temperature (HPLT) process employ subzero capable thermostatic high pressure equipment, which currently has no commercial equivalent. Successful HPLT runs were completed in this study using more conventional temperature control (1–3 °C) on pilot scale (20 L) high pressure processing equipment. The process yielded E. coli O157:H7 reductions of 1.4–1.7 log colony forming units (CFU)/g, which, while lower than conventional high pressure processing (HPP), may be sufficient to eliminate O157 populations typical of non-intact, whole muscle beef. Various quality factors, including color, purge losses and cooked tenderness, were unaffected by HPLT, while an equivalent HPP process at nonfreezing temperatures (551 MPa, 3 °C) induced color change (loss of redness), increased cook losses and decreased cooked tenderness compared to the control and HPLT beef. Producers of non-intact, whole muscle (blade tenderized or brine injected) meat, especially those that ship and sell frozen products, may look to HPLT processes to improve food safety.  相似文献   

10.
The objective of this study was to assess the combined effects of temperature, pH, sodium chloride (NaCl), and sodium pyrophosphate (SPP) on the heat resistance of Escherichia coli O157:H7 in minced beef meat. A fractional factorial design consisted of four internal temperatures (55.0, 57.5, 60.0 and 62.5 °C), five concentrations of NaCl (0.0, 1.5, 3.0, 4.5 and 6.0 wt/wt.%) and SPP (0.0, 0.1, 0.15, 0.2 and 0.3 wt/wt.%), and five levels of pH (4.0, 5.0, 6.0, 7.0 and 8.0). The 38 variable combinations were replicated twice to provide a total of 76 survivor curves, which were modelled by a modified three-parameter Weibull function as primary model. The polynomial secondary models, developed to estimate the time to achieve a 3-log and a 5-log reduction, enabled the estimation of critical pH, NaCl and SPP concentrations, which are values at which the thermo-tolerance of E. coli O157:H7 reaches it maximum. The addition up to a certain critical concentration of NaCl (~ 2.7–4.7%) or SPP (~ 0.16%) acts independently to increase the heat resistance of E. coli O157:H7. Beyond such critical concentrations, the thermo-resistance of E. coli O157:H7 will progressively diminish. A similar pattern was found for pH with a critical value between 6.0 and 6.7, depending upon temperature and NaCl concentration. A mixed-effects omnibus regression model further revealed that the acidity of the matrix and NaCl concentration had a greater impact on the inactivation kinetics of E. coli O157:H7 in minced beef than SPP, and both are responsible for the concavity/convexity of the curves. When pH, SPP or NaCl concentration is far above or below from its critical value, the temperatures needed to reduce E. coli O157:H7 up to a certain log level are much lower than those required when any other environmental condition is at its critical value. Meat processors can use the model to design lethality treatments in order to achieve specific log reductions of E. coli O157:H7 in ready-to-eat beef products.  相似文献   

11.
The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of vanillin against Listeria monocytogenes Scott A and Escherichia coli O157:H7 was determined in tripticase soy broth (TSB), pH 7 and 6, incubated at 35 °C/24 h and in semi-skim milk incubated at 35 °C/24 h and 7 °C/14 days. The influence of the fat content of milk on the antimicrobial activity of vanillin was tested in whole and skim milk incubated at 7 °C/14 days. Mixtures of clove and cinnamon with vanillin were also evaluated in semi skim milk incubated at 7 °C. The MICs for L. monocytogenes were 3,000 ppm in TSB (pH 7) and 2,800 ppm in TSB (pH 6). The MICs for E. coli O157:H7 were 2,800 ppm in TSB (pH 7) and 2,400 ppm in TSB (pH 6). The MBCs in TSB were 8,000 ppm for L. monocytogenes and 6,000 ppm for E. coli O157:H7. The pH values assayed did not influence significantly the MIC or MBC in TSB. The MICs in semi-skim milk for L. monocytogenes and E. coli O157:H7 were 4,000 and 3,000 ppm at 35 °C/24 h, and 2,500 and 1,000 ppm at 7 °C/7 days, respectively. The MBCs were 20,000 ppm for L. monocytogenes and 11,000 ppm for E. coli O157:H7. High incubation temperatures did not affect the MBC but increased the MIC of the vanillin in milk. This effect could be attributed to the increased membrane fluidity and to the membrane perturbing activity of vanillin at low temperatures. The fat in milk reduced significantly the antimicrobial activity of vanillin, probably due to effect protective of the fat molecules. Mixtures of clove and cinnamon leaves inhibited the growth of L. monocytogenes in a similar way that vanillin alone but had a synergistic effect on the E. coli O157:H7. Mixtures of cinnamon bark and vanillin had always a synergistic effect and some of the combination assayed showed bactericidal activity on the population of L. monocytogenes and E. coli O 157:H7.  相似文献   

12.
The inactivation and injury of Escherichia coli O157:H7 and Listeria monocytogenes in Tryptic soy broth stored at −5, −18 and −28°C were studied. Regardless of storage temperature, viable populations of E. coli O157:H7 and L. monocytogenes determined with TSA (uninjured and injured cells) or TSAB (uninjured cells), decreased as the storage time increased. However, the least surviving population of both test organisms was noted when stored at −18°C followed by those stored at −28 and −5°C. The viable populations of E. coli O157:H7 determined either with TSA or TSAB, was reduced most drastically during the first day of storage then decreased slowly thereafter. Viable populations of L. monocytogenes declined slightly and gradually during the entire storage period. Furthermore, E. coli O157:H7 was found more susceptible to the freezing storage than L. monocytogenes. After 21-day storage at −18°C, population reduction of E. coli O157:H7 determined with TSA was ca 1.72 log CFU/ml. On the other hand, a population reduction of only 0.64 log CFU/ml was noted with L. monocytogenes. Besides, the surviving population of E. coli O157:H7 contained a larger proportion of injured cells than L. monocytogenes.  相似文献   

13.
《Food microbiology》2004,21(1):105-110
Escherichia coli O157:H7 is a pathogen, which causes the hemorrhagic colitis, hemolytic uremic syndrome and thrombotic thrombocytopenic purpura in humans. Control of the bacterial cells in foods is an important factor to reduce outbreaks of the foodborne diseases. In this study, cinnamic aldehyde possessing antimicrobial activity against the bacterial cells was purified from the extract of cinnamon (Cinnamomum cassia Blume) shoot by sequential fractionation with various solvents and silica gel column chromatography. When E. coli O157:H7 cells were incubated at 37°C for 12 h in the presence of 500 μg ml−1 of the purified from cinnamic aldehyde, the viable counts decreased dramatically (from 4.9×106 to 1.0×102 cfu ml−1). In the presence of 1000 μg ml−1 of the substance, most of the cells were killed after 2 h of incubation suggesting that the antimicrobial activity of cinnamic aldehyde is bacteriocidal in E. coli. Scanning electron microscopic observations revealed that the bacterial cells treated with the cinnamic aldehyde suffered from severe damages in their surface structure. Minimal inhibitory concentration of the cinnamic aldehyde was determined to be 250 μg ml−1 against E. coli strains O157:H7 and O26 or 500 μg ml−1 against strains ATCC11105 and O111.  相似文献   

14.
This study evaluated the effects of a flood event, floodplain and climatic parameters on microbial contamination of leafy greens grown in the floodplains. Additionally, correlations between pathogenic bacteria and levels of indicator microorganisms have been also determined. To diagnose the microbial contamination after the flood event, sampling was carried out in weeks 1, 3, 5 and 7 after the flooding in four flooded lettuce fields. To assess the impact of flooding on the microbial contamination of leafy greens, indicator microorganisms (coliforms, Escherichia coli and Enterococcus) and pathogenic microorganisms (Salmonella spp., VTEC (E. coli O157:H7 and other verocytotoxin producing E. coli, O26, O103, O111, O145) and Listeria monocytogenes) were evaluated. Irrigation water, soil and lettuce samples showed levels of coliforms and E. coli higher than 5 and 3 log cfu/g or 100 mL, respectively when sampled 1 week after flooding. However, bacterial counts drastically declined three weeks after the flooding. Climatic conditions after flooding, particularly the solar radiation (6–8 MJ/m2), affected the survival of bacteria in the field. L. monocytogenes was not detected in lettuce samples, except for 2 samples collected 3 weeks after the flooding. The presence of Salmonella was detected in irrigation water, soil and lettuce by multiplex PCR one week after the flooding, but only 2 samples of soil and 1 sample of water were confirmed by colony isolation. Verotoxigenic E. coli was detected in soil and lettuce samples by multiplex PCR. Therefore, the implication of flood water as the source of VTEC contamination of soil and lettuce was not clear. E. coli counts in irrigation water were positively correlated with those in lettuce. A significant correlation (P < 0.005) was found between the presence of pathogens and E. coli counts, highlighting a higher probability of detection of pathogens when high levels of E. coli are found. The results obtained in the present study confirm previous knowledge which defined flooding as a main risk factor for the microbial contamination of leafy greens.  相似文献   

15.
The antibacterial activity of the essential oils (EO) of oregano and thyme added at doses of 0.1 or 0.2 and 0.1 ml/100 g, respectively, to feta cheese inoculated with Escherichia coli O157:H7 or Listeria monocytogenes was investigated during cheese storage under modified atmosphere packaging (MAP) of 50% CO2 and 50% N2 at 4 °C. Compositional analysis showed that the predominant phenols were carvacrol and thymol for both EO. In control feta inoculated with the pathogens and stored under MAP, results showed that E. coli O157:H7 and L. monocytogenes strains survived up to 32 and 28 days of storage. However, in feta cheese treated with oregano EO at the dose of 0.1 ml/100 g, E. coli O157:H7 or L. monocytogenes survived up to 22 and 18 days, respectively, whereas at the dose of 0.2 ml/100 g up to16 or 14 days, respectively. Feta cheese treated with thyme EO at 0.1 ml/100 g showed populations of E. coli O157:H7 or L. monocytogenes not significantly different (P > 0.05) than those of feta cheese treated with oregano at 0.1 ml/100 g. Although both essential oils exhibited equal antibacterial activity against both pathogens, the populations of L. monocytogenes decreased faster (P < 0.05) than those of E. coli O157:H7 during the refrigerated storage, indicating a stronger antibacterial activity of both essential oils against the former pathogen.  相似文献   

16.
This study aimed to evaluate the potential of dynamic high pressure (DHP) technology to inactivate pathogenic and spoilage microflora in orange juice. Escherichia coli O157:H7 ATCC 35150, Lactobacillus plantarum ATCC 14917, Leuconostoc mesenteroides ATCC 23386 and two orange juice isolates: Saccharomyces cerevisiae and Penicillium ssp. were subjected individually to different DHP treatments. The effectiveness of DHP treatment was first evaluated in phosphate buffered saline (PBS) before application in orange juice samples. The inactivation efficacy of DHP depended on the pressure applied and the number of passes. It was more efficient against Gram-negative strains than Gram-positives. Complete inactivation and 5 log reduction of E. coli O157:H7 were achieved in orange juice at 200 MPa after 5 and 3 passes at 25 °C, respectively. Lower inactivation was obtained with Penicillium ssp. (4 log), S. cerevisiae (2.5 log), L. plantarum (2.3 log) and L. mesenteroides (1.6 log). The gathered results revealed the potential of DHP to inactivate all the tested microorganisms and then, it could constitute a promising alternative technology for cold pasteurization of fruit juices.  相似文献   

17.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

18.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

19.
The antimicrobial properties of the American cranberry were studied against Escherichia coli O157:H7, Listeria monocytogenes, and Lactobacillus rhamnosus to determine the effects on growth inhibition, membrane permeability, and injury. Cranberry powder was separated using a C-18 Sep-Pak cartridge into sugars plus organic acids (F1), monomeric phenolics (F2), and anthocyanins plus proanthocyanidins (F3). Fraction 3 was further separated into anthocyanins (F4) and proanthocyanidins (F5) using an LH-20 Sephadex column. Each fraction was diluted in the brain heart infusion (BHI) broth to determine the minimum inhibitory/bactericidal concentrations (MIC/MBC). L. monocytogenes was the most susceptible to cranberry fraction treatment with the lowest MIC/MBC for each treatment, followed by E. coli O157:H7 and L. rhamnosus. Membrane permeability and potential was studied using LIVE/DEAD viability assay and using Bis (1, 3-dibutylbarbituric acid) trimethine oxonol (DiBAC4), respectively. L. rhamnosus demonstrated the highest permeability followed by E. coli O157:H7, and L. monocytogenes. L. rhamnosus demonstrated the highest recovery followed by E. coli O157:H7, and L. monocytogenes. Each cranberry fraction demonstrated membrane hyperpolarization at their native pH, while F2, F3, and F5 demonstrated membrane depolarization at neutral pH. With this knowledge cranberry compounds may be used to prevent maladies and potentially substitute for synthetic preservatives and antibiotics.  相似文献   

20.
Alfalfa and other seed sprouts have been implicated in several Escherichia coli O157:H7 and Salmonella spp. human illness outbreaks in the U.S. Continuing food safety issues with alfalfa seeds necessitate the need for discovery and use of novel and effective antimicrobials. The potential use of caprylic acid (CA) and monocaprylin (MC) for reducing E. coli O157:H7 and Salmonella spp. populations on alfalfa seeds was evaluated. The effectiveness of three concentrations of CA and MC (25, 50, and 75 mM) to reduce E. coli O157:H7 and Salmonella spp. populations in 0.1% peptone water and on alfalfa seeds was evaluated. Surviving populations of E. coli O157:H7 and Salmonella spp. were enumerated by direct plating on tryptic soy agar (TSA). Non-inoculated alfalfa seeds were soaked for up to 120 min to evaluate the effect of CA and MC solutions on seed germination rate. For planktonic cells, the efficacy of the treatments was: 75 MC > 50 MC > 25 MC > 75 CA > 50 CA > 25 CA. Both E. coli O157:H7 and Salmonella spp. were reduced to below the detection limit (0.6 log CFU/ml) within 10 min of exposure to 75 MC from initial populations of 7.65 ± 0.10 log CFU/ml and 7.71 ± 0.11 log CFU/ml, respectively. Maximum reductions of 1.56 ± 0.25 and 2.56 ± 0.17 log CFU/g for E. coli O157:H7 and Salmonella spp., respectively, were achieved on inoculated alfalfa seeds (from initial populations of 4.74 ± 0.62 log CFU/g and 5.27 ± 0.20 log CFU/g, respectively) when treated with 75 MC for 90 min. Germination rates of CA or MC treated seeds ranged from 84% to 99%. The germination rates of CA or MC soaked seeds and water soaked seeds (control) were similar (P > 0.05) for soaking times of ≤ 90 min. Monocaprylin (75 mM) can be used to reduce E. coli O157:H7 and Salmonella spp. on alfalfa seeds without compromising seed viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号