首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
采用电镀纳米镍中间层,对钛合金TA17与不锈钢0Cr18Ni9Ti进行扩散焊焊接试验研究.利用能谱对焊接接头的元素分布进行分析,结果表明:采用电镀纳米镍层作中间层能有效防止钛合金中的Ti、V、Al等元素与不锈钢中Fe、Ni、C等元素的相互扩散和迁移,很好地抑制了金属间化合物TiFe、TiFe2及脆性相TiC的形成.通过计算接头处扩散层的激活能可知纳米镍的扩散性能比镍箔的好.  相似文献   

2.
 为了减少不锈钢和碳钢热轧复合时结合界面形成脆性化合物,提高复合板的力学性能,在轧制温度为1 000、1 100及1 200 ℃,压下量约为70%的条件下,进行了添加不同厚度纯铁中间层的真空热轧复合试验。通过光学显微镜、SEM观察以及拉伸试验等,研究了纯铁中间层对复合板界面微观组织和拉伸性能的影响。结果表明,当加入不同厚度纯铁中间层时,同温度下不锈钢/碳钢复合板拉伸性能都有不同程度的提高。并且在小于70%压下量下,2 mm厚度的纯铁中间层可以完全阻止碳钢中的碳元素向不锈钢侧扩散,避免了碳铬化合物的形成,使结合界面的组织得到改善,力学性能得到提高。  相似文献   

3.
实验研究了不同中间层(Ni-Cr-Si-B、Ag-Cu-Ti、Ti-Cr-Ni、Nb-Ni)对MHC与GH4099合金热等静压扩散焊工艺(HIP-DB)下接头力学性能的影响。在热等静压工艺为1 150℃/130 MPa/180 min时,采用Nb-Ni中间层获得了可靠的MHC/GH4099焊接接头。采用Nb-Ni中间层的接头抗拉/抗剪强度达到84/41 MPa,高于采用Ni-Cr-Si-B、Ag-Cu-Ti和Ti-Cr-Ni中间层的连接强度。其扩散诱导反应层为Mo-Nb固溶体、Ni8Nb、Ni3Nb和Ni6Nb7,对其强度和厚度进行了测定,以建立界面微观结构与接头性能的相关性。研究发现,析出相Ni3Nb强度高、塑性好,对接头高温性能有益,裂纹从Mo-Nb固溶体处萌生,沿晶扩展至中间扩散层。  相似文献   

4.
界面特性对于碳钢/不锈钢双金属复合材料的质量控制至关重要。基于碳钢/不锈钢液-固复合新材料与工艺开发需要,对Q235/304液-固浇铸复合工艺进行了凝固模拟分析,并利用浇铸实验与剪切实验研究了液-固复合界面的组织与成分变化行为及其对后续轧材力学性能的影响。研究表明,不锈钢基板结合面凹槽化预处理有助于提高整体浇铸复合效果;实现有效冶金复合的温度与界面重要条件则为较高的碳钢过热钢液与不锈钢基板预热温度。其中,液-固复合工艺实现2钢种界面冶金复合的主要特征是:基板界面侧产生有一定厚度的重熔层;复合界面具有一定厚度的合金元素扩散层。据此,获得的液-固复合界面热轧态剪切强度达400 MPa以上,远高于国标210 MPa的门槛值,有望更好地提高这类双金属复合材料的服役性能。  相似文献   

5.
对YGH-60硬质合金与45钢添加Fe-30%Ni中间层进行真空电子束焊接试验,对接头显微组织相组成、显微硬度和断裂形式进行分析。结果表明,YGH-60硬质合金与45钢的电子束焊接性很差,添加含Ni中间层后能够阻碍Fe与C的相互扩散,抑制脆性相的产生。且Ni塑性好,有利于松弛焊接过程中的内应力,从而缓和硬质合金和钢的线膨胀系数和导热系数不同引起的较大热应力,提高接头抗裂性。使用中间层中含Fe 53%,过多Fe元素则会削弱Ni的优化作用,在电子束焊接的高温环境下与周围WC颗粒反应生成Fe_2W_4C脆性相,大量存在于WC表面,在硬质合金/中间层界面处有带状的固溶体混合物,这些带状固溶体相和脆性相会降低接头的力学性能。接头拉伸强度不高,平均拉伸强度为66 MPa,断裂发生于硬质合金与中间层界面处,接头断裂形式为准解理断裂。硬质合金熔化量较少,难以与中间层充分熔合,形成具有较好力学性能的接头。  相似文献   

6.
对?4 600 mmASME SB265 Gr.1/SA266Gr.2钛/钢复合管板进行爆炸焊接试验,并对复合板结合界面的微观组织特征及力学性能进行了分析测试。宏观、微观分析显示,复合板的结合界面为波状结合,界面两侧的金属均发生了不同程度的塑性变形;界面附近存在短距离的元素互相扩散;界面无分层、夹杂等缺陷。力学性能测试表明,结合界面处的维氏硬度最高,随着与界面距离的增大逐渐降低;复合板的拉伸、冲击、弯曲性能符合ASTM B 898标准的要求,能够满足装备使用要求。  相似文献   

7.
通过对TA17/0Cr18NigTi相变超塑性扩散焊接头拉伸断口的观察分析,研究了其接头的组织结构、断裂机制。分析表明,在焊接过程中,由于钛合金/不锈钢两侧的Ti、Fe、Cr等原子的互扩散,在接头界面处形成了B—Ti、FeTi、Ee2Ti、σ等物相。由于界面处缺陷的存在以及钛合金侧拉向残余应力的存在,使拉伸断裂主要发生在B—Ti和FeTi中。分析还发现,接头对缺陷很敏感,焊接端面上的倒角、划痕及孔洞会使接头的强度降低。  相似文献   

8.
爆炸焊接是应用爆炸载荷使基板和复板面复合的固相连接技术,将镁合金和纯铝复合形成层状复合材料有望拓宽镁合金的应用。本文通过爆炸焊接成功地实现了AZ31镁合金和1060纯铝的面复合,应用光学显微镜(OM),扫描电镜(SEM),透射电镜(TEM)及电子式万能试验机和维氏硬度计对AZ31/1060结合界面处的显微组织、成分分布、力学性能进行测试和分析。结果表明,应用爆炸焊接技术可以使AZ31镁合金和1060纯铝的焊合率达到99.4%;结合界面成波形结构,爆炸焊接过程中,界面处发生元素扩散;随着到界面距离的增加,镁合金的显微组织逐渐从形变带过渡到细晶区再转变为拉长晶粒区,远离界面的组织以等轴晶为主;AZ31/1060爆炸复合板抗拉强度为175 MPa,延伸率为3.3%,剪切强度为62.2 MPa,在拉伸断裂过程中镁合金先断裂然后纯铝断裂,结合界面处不发生开裂;界面处镁合金一侧存在高硬度区,厚度约为200μm。  相似文献   

9.
以厚度≤1 mm的Cr,Ni混合粉做中间层,在焊接温度为1650℃,真空度(3.0~4.0)×10-2 Pa,保温时间1~2 h,加压0.1 MPa条件下对钼和石墨进行扩散焊接。通过扫描电子显微镜观察焊接试样接口组织形貌,用其附带的能谱仪进行化学成分分析,用X射线衍射仪进行物相分析。并分析焊接过程中的界面反应,认为实验条件下的焊接过程与瞬间液相扩散焊(TLP)焊接机制相一致,包括中间层的熔化(或溶解)、母材溶解和迁移、等温凝固、固相成分均匀化4种相变过程,靠近母材部分界面反应遵循快速通道扩散机制,整个焊接层组元浓度梯度与薄膜源扩散模型相一致。中间层与母材元素反应形成的最终产物包括Cr3C2,Cr7C3及Mo2C等Ni以单质形式弥散其中,最终形成不同成分粒状组织,一定程度上阻止了脆性相中的裂纹扩展。石墨基体中也明显有含合金元素的新相生成,有利于实现基体与中间层的连接。  相似文献   

10.
针对真空热轧制备不锈钢复合板工艺复杂和碳元素在复合界面扩散易形成碳化物影响结合强度的问题,进行了在低碳钢和不锈钢之间加入金属粉末的不锈钢/低碳钢非真空热轧试验研究。结果表明,金属粉末作为中间层时,不锈钢和低碳钢容易达到良好的冶金结合,还可以阻碍碳元素向复合界面处扩散,减少了碳铬化合物形成,有利于界面结合强度的提高。  相似文献   

11.
 采用钨极氩弧焊和手工电弧焊焊接316L/X65双金属复合管。利用光学显微镜、能谱仪、扫描电镜、力学性能测试及电化学测试等分析手段研究了复合管焊接接头的微观结构、化学成分、力学性能及电化学腐蚀性能。结果表明,过渡层焊缝的化学成分受到稀释较小,过渡层熔合线附近出现了元素迁移,不锈钢层焊缝与母材的化学成分基本一致;扩散层为类马氏体+残留奥氏体,过渡层和不锈钢层焊缝均为奥氏体+少量铁素体;在试验参数下,焊接接头各项力学性能优良、无缺陷;覆层焊缝与母材的电化学腐蚀性能相差极小。  相似文献   

12.
文章使用真空焊接工艺,使用Cu-S-Ag混合粉末作为焊接材料,研究铁铝金属间化合物多孔材料和316L不锈钢的焊接性能.结果表明:真空钎焊后焊缝的最大抗拉强度可达86.2MPa,Fe3Al多孔材料和不锈钢的真空焊接机理是液相扩散焊接,母材和焊接材料通过元素的相互扩散和反应进入多孔材料与致密结合部分的界面及部分多孔材料孔道,形成稳固的焊接界面.  相似文献   

13.
研究采用电子束偏置铜侧的方法完成了T2铜和TC4的异种金属焊接,并采用光学显微镜(OM)、扫描电镜(SEM)、显微硬度及抗拉强度测试等方式分析其微观组织及力学性能特征。研究结果表明:铜侧焊接具有成形较好的焊缝,焊缝表面鱼鳞纹较均匀,成形较好,无明显的微裂纹、气孔以及夹渣现象,电子束焊接可实现单侧焊接双面成形。钛合金侧焊缝可观察到宽度25~40μm的金属间化合物层,金属间化合物层由多种反应产物组成,金属间化合物层的存在将恶化接头的力学性能。在偏铜侧1.5 mm焊接时,抗拉强度可达到152 MPa,相当于T2 Cu抗拉强度的66%,拉伸断口表现为脆性解理断裂,引起断裂的主要物相为CuTi相。  相似文献   

14.
采用热等静压(HIP)工艺连接Al12A12和Ti6Al4V两种不同的航空航天用材料.利用扫描电镜、能谱仪和X射线衍射仪观察连接过渡区的微观组织和组成的演化,并测试其主要的力学性能.结果表明:采用热等静压制备这两种材料的界面连接好;Ti/Al反应层界面处形成了不同的金属间化合物,例如,Al3 Ti、TiAl2和TiAl;连接接头处硬度为163 HV,界面连接处剪切强度达到了23 MPa,比只添加镀层而无中间层的连接强度提高了约17.9%,但低于带有中间层的连接强度.由于过烧和孔隙的形成使得断裂方式是脆性断裂.由此可知,在热等静压成形过程中异种材料的元素发生了相互扩散,在扩散连接处形成了不同的金属间化合物,这些金属间化合物影响连接处的力学性能.   相似文献   

15.
通过爆炸焊接工艺制备Ni/Cu层状复合板,通过光学显微镜、扫描电镜、电子探针和能谱仪以及拉伸、剪切和硬度实验,研究退火温度对Ni/Cu复合板显微组织和力学性能的影响规律。结果表明:随退火温度升高,复合板界面两侧Ni、Cu基体晶粒尺寸增大,界面元素扩散层厚度增加,退火温度为600℃时,元素扩散层厚度达到5.82μm。200℃退火后复合板的硬度分布相比于爆炸态变化不大,退火温度为400℃和600℃时,界面硬度(HV1)分别为65.1和66.1,明显低于爆炸态(160.2);爆炸态及200、400和600℃退火后复合板的抗拉强度分别为351.6、305.9、281.7和284.8 MPa,伸长率分别为2.6%、7.8%、39.1%和39.4%;退火温度为400℃时,复合板的剪切强度达到最大值,为191.3 MPa,比爆炸态提高了17.5 MPa。  相似文献   

16.
谢红飙  王德蔚  余超  祁梓宸  肖宏 《钢铁》2017,52(12):48-53
 针对真空热轧制备不锈钢/碳钢复合板过程中碳钢中的碳元素和不锈钢中的铬元素易形成碳化物影响复合强度的问题,进行了在碳钢和不锈钢之间加入纯铁层的不锈钢/碳钢真空热轧试验研究。测量了不同压下量下复合板的结合强度,并对轧后的复合板进行了金相组织观察和扫描电镜元素分布的分析。试验结果表明,加入纯铁中间层时,纯铁和碳钢容易达到良好的冶金结合,同时纯铁中间层的加入可以阻碍碳钢中的碳元素向复合界面处扩散,减少了碳铬化合物形成,有利于界面结合强度的提高。  相似文献   

17.
本文开展了TC4钛合金棒材扩散连接及锻造工艺实验,研究了锻造变形量对扩散连接界面显微组织和力学性能的影响规律。结果表明,采用950℃、140 MPa、4 h的扩散连接工艺,TC4钛合金连接界面实现了冶金结合,合金强度达到母材强度的95%以上,延伸率为7%,合金在扩散区发生脆性断裂。扩散连接的TC4钛合金经过高温锻造后,扩散连接界面完全消失,显微组织由等轴α相、次生α相与少量的β相组成;随着锻造变形量的增加,等轴α相的尺寸逐渐降低、次生α相体积分数增大,合金强度呈现升高趋势;当变形量为40%时,等轴α相和次生α相含量达到较优匹配度,抗拉强度达到950 MPa,延伸率达到17.5%,锻造后合金的断裂方式转变为韧性断裂。  相似文献   

18.
以6061Al合金板为包覆材料,以B4C/Al材料作为中间层,采用粉末冶金法制备三明治结构的B4C/Al-Al层状复合板,进一步轧制成不同厚度的板材。对复合板的微观形貌与结构进行观察和分析,测试材料的抗拉强度和硬度,分析断裂机理。结果表明:B4C/Al-Al层状复合板的Al合金层和B4C/Al层之间界面结合良好,在B4C/Al层中B4C颗粒均匀分布在Al合金基体中;复合材料的硬度呈"馒头峰"分布,中间层的硬度大于包覆层的硬度;随板材轧制厚度减小,复合材料的抗拉强度提高,最大抗拉强度达205 MPa,与轧向呈0°,45°和90°这3个方向的抗拉强度相差不大,拉伸过程中的温升差约为2℃;B4C颗粒的加入对Al合金基体起到强化作用,断裂过程中的失效形式主要为颗粒/基体界面脱粘和铝合金的撕裂。  相似文献   

19.
铜合金/钛合金双金属材料能发挥各自的性能优势,兼具轻质、耐磨、高强等优异性能。本文通过真空热压扩散法连接QAl10-4-4铝青铜和TC6钛合金,并采用显微组织观察和剪切强度测试等方法,研究了直接连接和添加AgCuZnCd连接的QAl10-4-4/TC6双金属的界面组织和力学性能,探究了连接参数与中间层对QAl10-4-4/TC6双金属连接质量的影响规律,分析了双金属界面过渡层形成机理,建立了连接工艺-界面组织-力学性能的内在关联。结果表明:直接扩散连接的QAl10-4-4/TC6双金属连接质量较差,生成的金属间化合物导致界面上生长了贯穿长裂纹,剪切强度仅有21 MPa;添加AgCuZnCd连接QAl10-4-4/TC6双金属后界面金属间化合物减少,当连接温度为850 ℃时,界面剪切强度最大为178.19 MPa,温度超过850 ℃时,双金属界面强度迅速降低。  相似文献   

20.
使用金属熔覆和热轧的方法成功制备了覆层为Cr13不锈钢的复合钢筋。通过有限元数值模拟发现,在粗轧区域的高温变形过程,塑性应变主要集中在轧件表层和1/4位置,芯部的变形较表层偏小,随着变形的不断进行,塑性应变不断向碳钢芯部渗透。复合钢筋在成品机架K1变形时,不锈钢全部包裹在碳钢上,但是在横断面的不锈钢覆层厚度分布不均匀,在复合钢筋横肋根部的不锈钢覆层厚度最薄,在横肋顶部的不锈钢覆层厚度最厚。复合钢筋的开轧温度为1 130℃,精轧温度为1 000℃。复合钢筋成品的界面结合良好,达到了冶金结合状态,在界面处Cr的扩散层厚度达到了32μm。复合钢筋成品的各项力学性能均达到了国标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号