首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Generally, palaeoenvironmental interpretations consider only allogenic processes, when autogenic factors may have a strong influence on proxies of stratigraphic sequences. For instance, the Holocene history of the vegetation along the southern littoral of the State of Bahia in north‐eastern Brazil is characterized by mangrove dynamics controlled by allogenic processes. However, over smaller timescales (~700 years), autogenic processes may have controlled vegetation dynamics and hence observed pollen distribution. This work proposes tidal channel dynamics as one of the main cause for changes in pollen assemblage along the studied stratigraphic profiles during the last centuries, based on sedimentology, pollen and elemental analysis (δ13C, δ15N and C/N) and radiocarbon dating of sedimentary organic matter from two cores sampled from an abandoned meander and a tidal flat at the mouth of the Jucuruçu River. One core was sampled from a mangrove formed during the past ~550 cal yr bp . Another core recorded sediments in a várzea forest (swamp seasonally and permanently inundated by freshwater) located ~2.7 km from the current shoreline, which displayed a maximum age of ~680 cal yr bp . Two facies associations were identified: tidal channel (A) and tidal flat/oxbow lake (B). This work proposes allogenic processes as the main driving forces controlling the wetlands dynamics at the studied site during the Holocene. However, our data also reveal that part of the changes in vegetation over the last ~700 years reflect tidal channels and tidal flats development, which represent autogenic processes. The change in timescale analysis from the Holocene to recent centuries may have weakened the influence of allogenic factors. However, this needs interpretation with reference to the spatial scale of the depositional environment as the larger the depositional system analyzed, the stronger the influence of autogenic processes on stratigraphic sequences over longer timescales. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The geomorphology of the southern Yellow Sea(SYS) is characterized by offshore radial sand ridges(RSR).An offshore tidal channel(KSY Channel) is located perpendicular to the coast,comprised of a main and a tributary channel separated by a submarine sand ridge(KSY Sand Ridge) extending seaward.In order to investigate the interactions among water flow,sediment transport,and topography,current velocity and suspended sediment concentration(SSC) were observed at 11 anchor stations along KSY Channel in RSR during a spring tide cycle.High resolution bottom topography was also surveyed.Residual currents and tidally averaged suspended sediment fluxes were calculated and analyzed by using the decomposition method.Results suggested that the water currents became stronger landward but with asymmetrical current speed and temporal duration of flood and ebb tides.Residual currents showed landward water transport in the nearshore channel and a clockwise circulation around the KSY Sand Ridge.Tidally-averaged SSC also increased landward along the channel.The main mechanisms controlling SSC variations were resuspension and horizontal advection,with spatial and temporal variations in the channel,which also contributed to sediment redistribution between channels and sand ridges.Residual flow transport and the tidal pumping effect dominated the suspended sediment flux in the KSY Channel.The KSY Sand Ridge had a potential southward migration due to the interaction between water flow,sediment transport,and topography.  相似文献   

3.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

4.
In this study, we captured how a river channel responds to a sediment pulse originating from a dam removal using multiple lines of evidence derived from streamflow gages along the Patapsco River, Maryland, USA. Gages captured characteristics of the sediment pulse, including travel times of its leading edge (~7.8 km yr−1) and peak (~2.6 km yr−1) and suggest both translation and increasing dispersion. The pulse also changed local hydraulics and energy conditions, increasing flow velocities and Froude number, due to bed fining, homogenization and/or slope adjustment. Immediately downstream of the dam, recovery to pre-pulse conditions occurred within the year, but farther downstream recovery was slower, with the tail of the sediment pulse working through the lower river by the end of the study 7 years later. The patterns and timing of channel change associated with the sediment pulse were not driven by large flow or suspended sediment-transporting events, with change mostly occurring during lower flows. This suggests pulse mobility was controlled by process-factors largely independent of high flow. In contrast, persistent changes occurred to out-of-channel flooding dynamics. Stage associated with flooding increased during the arrival of the sediment pulse, 1 to 2 years after dam removal, suggesting persistent sediment deposition at the channel margins and nearby floodplain. This resulted in National Weather Service-indicated flood stages being attained by 3–43% smaller discharges compared to earlier in the study period. This study captured a two-signal response from the sediment pulse: (1) short- to medium-term (weeks to months) translation and dispersion within the channel, resulting in aggradation and recovery of bed elevations and changing local hydraulics; and (2) dispersion and persistent longer-term (years) effects of sediment deposition on overbank surfaces. This study further demonstrated the utility of US Geological Survey gage data to quantify geomorphic change, increase temporal resolution, and provide insights into trajectories of change over varying spatial and temporal scales.  相似文献   

5.
Luminescence dating is one of the most promising technique available for studying bioturbation on pedological timescales. In this study, we use multi-grain and single-grain quartz OSL to quantify termite bioturbation processes (Macrotermes natalensis) in a savannah ecosystem in Ghana. Termites transport soil from depth to the surface to construct termitaria. Over time, erosion levels these mounds and returns the sediment to the soil surface. These two processes of construction and erosion together represent an upward “conveyor belt” sediment transport process. We find that the sediment is effectively bleached during the erosion process allowing us to quantify retrospectively, for the first time, the surface deposition rate, the inverse of the upwards transport rate. At this site, this is ~0.28 mm year−1 and began about 4.000 years ago. Downward mixing through subsurface galleries may replace 10–20% of the volume ka−1 below the unit formed by reburied termite deposits.  相似文献   

6.
The aim of this study is to analyze suspended sediment transport in a Mediterranean agricultural catchment under traditional soil and water conservation practices. Field measurements were conducted in Can Revull, a small ephemeral catchment (1.03 km2) on the island of Mallorca. This study uses continuous turbidity records to analyse suspended sediment transport regimes, construct and interpret multiple regression models of total suspended sediment concentration (SSC) and of SSC related to stormflow discharge, and assess the sediment loads and yields of three hydrological years (2004–2005 to 2006–2007). An annual average SSC of 17.3 mg l?1, with a maximum of 2270 mg l?1, was recorded in the middle of the winter period when rainfall intensities are high and headwater slopes are ploughed and thus bare. Strong seasonal contrasts of baseflow dynamics associated with different degrees of dilution provide a large scatter in SSC and in the derived rating curves, reflecting that other factors control the supply of suspended sediment. Multiple regression models identify rainfall intensity as the most significant variable in sediment supply. However, under baseflow conditions, physical and biological processes generate sediment in the channel that is subsequently removed during high flow. In contrast, when baseflow is not present, rainfall intensity is the only process that supplies sediment to the channel, mostly from hillslopes. Considering the study period as average in terms of total annual rainfall and intensities, suspended sediment yields were an order of magnitude lower than those obtained in other Mediterranean catchments, a factor that can be related to the historical use of soil conservation practices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A tidal bore is a water discontinuity at the leading edge of a ood tide wave in estuaries with a large tidal range and funneling topography. New measurements were done in the Garonne River tidal bore on 14 15 November 2016, at a site previously investigated between 2010 and 2015. The data focused on long, continuous, high-frequency records of instantaneous velocity and suspended sediment con- centration (SSC) estimate for several hours during the late ebb, tidal bore passage and ood tide. The bore passage drastically modi ed the ow eld, with very intense turbulent and sediment mixing. This was evidenced with large and rapid uctuations of both velocity and Reynolds stress, as well as large SSCs during the ood tide. Granulometry data indicated larger grain sizes of suspended sediment in water samples compared to sediment bed material, with a broader distribution, shortly after the tidal bore. The tidal bore induced a sudden suspended sediment ux reversal and a large increase in suspended sedi- ment ux magnitude. The time-variations of turbulent velocity and suspended sediment properties indicated large uctuations throughout the entire data set. The ratio of integral time scales of SSC to velocity in the x-direction was on average TE,SSC/TE,x 0.16 during the late ebb tide, compared to TE,SSC/ TE,x 0.09 during the late ood tide. The results imply different time scales between turbulent velocities and suspended sediment concentrations.  相似文献   

8.
The rate of vertical accretion (typically 14–18 mm h−1) during eight floods in the Waipaoa River basin, with recurrence intervals of 5 to 60 years, was determined by relating the floodplain stratigraphy at McPhail's bend to the 1948–1995 flood history. Overbank deposits remaining after a flood that occurred in March 1996 suggest a rate of vertical accretion of 15 mm h−1. By contrast, because the flow velocity across the floodplain was too high to permit deposition from suspension, during the record flood of March 1988 the rate of vertical accretion was only 6 mm h−1. The sequence of deposition is highly discontinuous, and the rapid vertical accretion is a response to a late 19th to early 20th century phase of deforestation in the headwaters that probably initiated a far greater change in suspended sediment yield than in discharge. Cross-section surveys conducted since 1948 indicate that the high suspended sediment load of the Waipaoa River also promoted in-channel deposition, which effected a progressive reduction in bankfull channel width although, due to the overbank deposition, channel capacity remained constant. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding sediment sorting and bedding dynamics has high value to unravelling the mechanisms underlying geomorphological, geological, ecological and environmental imprints of tidal wetlands and hence to predicting their future changes. Using the Nanhui tidal flat on the Changjiang (Yangtze) Delta, China, as a reference site, this study establishes a schematized morphodynamic model coupling flow, sediment dynamics and bed level change to explore the processes that govern sediment sorting and bedding phenomena. Model results indicate an overall agreement with field data in terms of tidal current velocities, suspended sediment concentrations (SSCs), deposition thicknesses and sedimentary structures. Depending on the variation of tidal current strength, sand-dominated layers (SDLs) and mud-dominated layers (MDLs) tend to form during spring and neap tides, respectively. Thinner tidal couplets are developed during daily scale flood–ebb variations. A larger tidal level variation during a spring–neap tidal cycle, associated with a stronger tidal current variation, favours the formation of SDLs and tidal couplets. A larger boundary sediment supply generally promotes the formation of tidal bedding, though the bedding detail is partially dependent on the SSC composition of different sediment types. Sediment properties, including for example grain size and settling velocity, are also found to influence sediment sorting and bedding characteristics. In particular, finer and coarser sediment respond differently to spring and neap tides. During neap tides, relatively small flow velocities favour the deposition of finer sediment, with limited coarser sediment being transported to the upper tidal flat because of the larger settling velocity. During spring tides, larger flow velocities transport more coarser sediment to the upper tidal flat, accounting for distinct lamination formation. Model results are qualitatively consistent with field observations, but the role of waves, biological processes and alongshore currents needs to be included in further studies to establish a more complete understanding.  相似文献   

11.
This study investigates the relation between channel changes, as mapped from aerial photography, and bed‐material transport along Chilliwack River, British Columbia. Detailed mapping of channel features was completed for five dates between 1952 and 1991 using an analytical stereoplotter. Data were transferred to a geographic information system (GIS) to analyse changes during four consecutive periods. Erosion and deposition volumes along channel reaches were estimated by multiplying measured areal changes by the bed‐material depth along each reach. Bed‐material transport rates are related to morphologic changes using a sediment budget approach. The highest rate of transport for the four study periods is estimated as 55 000 ± 10 000 m3 a−1 between 1983 and 1991. These rates are compared with estimates from short‐term (1–2 year) changes along the lower reach to investigate variations in sediment flux that may otherwise remain undetected. Significant morphologic change occurs roughly once every 5 years when flows are large enough to erode and entrain large volumes of bed material stored within the contemporary floodplain. In the absence of large floods, transport rates decline and vegetation begins to establish new floodplain. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This study investigates sediment transport at a very low‐energy backbarrier beach in southern Portugal, from a spring‐to‐neap tide period, during fair‐weather conditions. Rates and directions of transport were determined based on the application of fluorescent tracer techniques. Wind and currents were collected locally, whereas the dominant small and short‐period wind waves were characterized using a morphodynamic modelling system coupling a circulation model, a spectral wave model, and a bottom evolution model, well validated over the study area. For the recorded conditions sediment transport was small and ebb oriented, with daily transport rates below 0.02 m3 day‐1. Tidal currents (mainly ebb velocities) were found to be the main causative forcing controlling sediment displacements. Transport rates were higher during spring tides, tending towards very small values at neap tides. Results herein reported points towards the distinction between tracer advection and tracer dispersion in this type of environment. Transport by advection was low as a consequence of the prevailing hydrodynamic conditions (Hs < 0.1 m, and max. current velocity of 0.5 m s‐1) and the tracer adjustment to the transport layer, whereas dispersion was relatively high (few metres per day). Tracer techniques allowed distinguishing the broad picture of transport, but revealed the need for refinement in this type of environments (bi‐directional forcing by ebb and flood cycles). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The collapse of soil pipes due to internal erosion can result in fully mature gullies. Few studies have measured the rates of sediment detachment and transport through soil pipes in situ. The objectives of this work were to determine suspended sediment concentration (SSC) in soil pipes as a function of pipeflow rate to develop sediment rating curves (SRC) and measure the bedload transport as a function of cumulative flow per storm event. H-flumes were installed in seven discontinuous gullies formed by pipe collapse and instrumented for pipe discharge measurements and suspended sediment sampling. The typical response to pipeflow was an initial flush of high concentration of suspended sediment followed by a decrease as pipeflow increased (rising limb of hydrograph). Pipeflows were often so dynamic that it was difficult to consistently capture the initial flush of sediment, resulting in weak to non-existent SRCs. The falling limb of the hydrograph tended to have a relatively low SSC. Thus, soil pipe SRCs tended to be better represented by hysteretic SRCs, although relationships between SSC and flow rate were poorly represented by SRCs. A power law equation given by SSC = aQb was adopted to represent the SRC relationships. Fitting this equation to data showed a correlation between the offset, a, and the slope, b, with the slope decreasing as the offset increases. Both SRC parameters (a and b) were correlated to the contributing area of the individual pipe. Bedload appeared to be an important contributor to sediment transport, with bedload – expressed as an average event sediment concentration (mg l−1) – decreasing as the volume of the event discharge (m3) increased. A significant portion (11–31%) of the bedload material was gravel and aggregates (>2 mm diameter material). While this work was the first to determine SRCs for soil pipes, refined sampling and measurement techniques are needed. © 2020 John Wiley & Sons, Ltd.  相似文献   

14.
Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats’ morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats’ equilibrium as a simplified balance between tidal mechanisms and wave resuspension.  相似文献   

15.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Field observations on hydraulics and sediment dynamics during extreme floods in two mountain torrents show the influence of man-made constructions such as bridges and check dams, in addition to the sediment supplied naturally by the basin and the channel network, on the formation of hyperconcentrated flows. In the Pyrenean Arás basin, hyperconcentrated flow occurred after collapse of a bridge, which in turn mobilized large volumes of sediment from the stream channel and, subsequently, destroyed a series of check dams. Boulders up to several metres in size were transported in a mixture of sand and fine material. A minimum of 100000 tonnes of sediment were deposited on the alluvial fan during the event. Prior to bridge destruction, mean bedload transport rates had reached 0.4t m−1 s−1 upstream. In the alpine Lainbach basin, the flood was characterized by transportation of large amounts of slope material, including debris flows. Along its main tributary an intensive hyperconcentrated flow occurred during the rising stage, whereas in the main valley smaller flows occurred after failure of check dams. The depth of coarse material deposited reached 80 cm. The effectiveness of the Aràs and Lainbach floods was attained due to exceptional rates of energy expediture. Flood power ranged from 20000 W m−2 to 40000 W m−2 on average. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Every year the Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment, respectively. These high loads of suspended sediment reflect the very high rate of denudation in their drainage basins. The average mechanical denudation rate for the Ganges and Brahmaputra basins together is 365 mm 103 yr−1. However, the rate is higher in the Brahmaputra Basin than that in the Ganges Basin. Several factors, including mean trunk channel gradient, relief ratio, runoff, basin lithology and recurring earthquakes are responsible for these high denudation rates. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) are delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) are deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) are deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3·9 cm yr−1. Although the Brahmaputra transports a higher sediment load than the Ganges, the channel bed aggradation rate is much higher for the Ganges. This study also documents a wide range of interannual, seasonal and daily variation in suspended sediment transport and water discharge. Interannual variation in sediment deposition within the basin is also suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Using in situ, continuous, high frequency (8–16 Hz) measurements of velocity, suspended sediment concentration (SSC), and salinity, we investigate the factors affecting near-bed sediment flux during and after a meteorological event (cold front) on an intertidal flat in central San Francisco Bay. Hydrodynamic forcing occurs over many frequency bands including wind wave, ocean swell, seiching (500–1000 s), tidal, and infra-tidal frequencies, and varies greatly over the time scale of hours and days. Sediment fluxes occur primarily due to variations in flow and SSC at three different scales: residual (tidally averaged), tidal, and seiching. During the meteorological event, sediment fluxes are dominated by increases in tidally averaged SSC and flow. Runoff and wind-induced circulation contribute to an order of magnitude increase in tidally averaged offshore flow, while waves and seiching motions from wind forcing cause an order of magnitude increase in tidally averaged SSC. Sediment fluxes during calm periods are dominated by asymmetries in SSC over a tidal cycle. Freshwater forcing produces sharp salinity fronts which trap sediment and sweep by the sensors over short (∼30 min) time scales, and occur primarily during the flood. The resulting flood dominance in SSC is magnified or reversed by variations in wind forcing between the flood and ebb. Long-term records show that more than half of wind events (sustained speeds of greater than 5 m/s) occur for 3 h or less, suggesting that asymmetric wind forcing over a tidal cycle commonly occurs. Seiching associated with wind and its variation produces onshore sediment transport. Overall, the changing hydrodynamic and meteorological forcing influence sediment flux at both short (minutes) and long (days) time scales.  相似文献   

20.
The hydrodynamics of a small tributary channel and its adjacent mudflat is studied in Willapa Bay, Washington State, USA. Velocity profiles and water levels are simultaneously measured at different locations in the channel and on the mudflat for two weeks. The above tidal flat and channel hydrodynamics differ remarkably during the tidal cycle. When the water surface level is above the tidal flat elevation, the channel is inactive. At this stage, the above tidal flat flow is predominantly aligned along the Bay axis, oscillating with the tide as a standing wave with peak velocities up to 0.3 m/s. When the mudflat becomes emergent, the flow concentrates in the channel. During this stage, current velocities up to 1 m/s are measured during ebb; and up to 0.6 m/s during flood. Standard equations for open-channel flow are utilized to study the channel hydrodynamics. From the continuity equation, a lateral inflow is predicted during ebb, which likely originates from the drainage of the mudflat through the lateral runnels. Both advective acceleration and lateral discharge terms, estimated directly from the velocity profiles, play a significant role in the momentum equation. The computed drag coefficient for bottom friction is small, due to an absence of vegetation and bottom bedforms in the channel. Sediment fluxes are calculated by combining flow and suspended sediment concentration estimated using the acoustic backscatter signal of the instruments. A net export of the sediment from the channel is found during ebb, which is not balanced by the sediment import during flood. When the mudflat is submerged, ebb-flood asymmetries in suspended sediment concentration are present, leading to a net sediment flux toward the inner part of the Willapa Bay. Finally, a residual flow is detected inside the channel at high slack water, probably associated with the thermohaline circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号