首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Multidrug resistance (MDR) is one of the major obstacles to improving outcomes of chemotherapy in tumour patients. However, progress has been slow to overcome this phenomenon due to the limitations of current cell/tissue models in recapitulating MDR behaviour of tumour cells in vitro. To address this issue, a more pathologically relevant, three‐dimensional (3D) culture of human breast cancer cells was developed by seeding the adriamycin‐resistant cells MCF‐7R in silk‐collagen scaffolds. The cultures of the parental cell line MCF‐7 served as controls. Distinct growth profiles of MCF‐7R and MCF‐7 cells were observed when they were cultured in the scaffolds in comparison with those in the monolayer culture, including cell proliferation, cellular aggregate formation, and expression of drug resistance‐related genes/proteins. Moreover, the 3D cultures of these cell lines especially the cultures of MCF‐7R exhibited a significantly enhanced drug resistance evidenced by their increased IC50 values to the anticancer drugs and improved drug efflux capability. An altered cell cycle distribution and improved percentage of breast cancer stem cell (BCSC)‐like cells was also found in the present study. This might play an important role in promoting the drug‐resistance production in those 3D cultures. Thus, we established improved 3D cultures of MDR human breast cancer. It would provide a robust tissue model for use to evaluate the efficacy of anticancer drugs, explore mechanisms of MDR, and enrich BCSCs in vitro.  相似文献   

2.
3.
Tamoxifen is effective for treating estrogen receptor-alpha (ERα)-positive breast cancers. However, few molecular mediators of tamoxifen resistance have been elucidated. In the present study, we determine the underlying roles of Brachyury in tamoxifen resistance. Loss- and gain-of-function assay are utilized to confirm the oncogenic roles of Brachyury in breast cancer. Compared with the normal MCF10A cells, Brachyury is commonly overexpressed in breast cancer cell lines. Knockdown of Brachyury inhibits tamoxifen resistance, whereas overexpression of Brachyury enhances tamoxifen resistance as demonstrated increased cell viability and reduced cell apoptosis. Mechanistically, we demonstrate for the first time that Brachyury mediates tamoxifen resistance by regulating Sirtuin-1 (SIRT1). Collectively, our data, as a proof of principle, indicate that Brachyury is a candidate marker for predicting the clinical efficacy of tamoxifen and targeting SIRT1 could overcome resistance to tamoxifen in breast cancer cells.  相似文献   

4.
目的 研究CENP-H对乳腺癌细胞增殖能力的影响,初步探讨CENP-H与乳腺癌发生、发展的关系.方法 将反转录病毒质粒pMSCV和pMSCV-CENP-H经脂质体转染至293FT细胞制备病毒,并感染MCF7细胞,用嘌呤霉素筛选及Western blot鉴定,建立CENP-H基因稳定表达的MCF7细胞株;应用噻唑盐(MTT)法、平板集落形成实验、5-溴-2-脱氧尿苷(BrdU)掺入法检测CENP-H对MCF7细胞增殖的影响.结果 成功建立稳定表达CENP-H的MCF7细胞株,并发现CENP-H过表达可上调细胞增殖相关分子cyclin D1的表达;MTT、平板克隆实验及Brdu掺入实验结果显示CENP-H过表达后,MCF7的增殖能力模型增强.结论 CENP-H可上调cyclin D1的表达,增强MCF7的增殖能力,提示CENP-H可能在乳腺癌发生、发展中起重要作用.  相似文献   

5.
HER2 overexpression is one of the most recognizable molecular alterations in breast tumors known to be associated with a poor prognosis. In the study described here, we explored the effect of HER2 overexpression on the sensitivity of breast cancer cells to the growth-inhibitory effects of 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), a synthetic triterpenoid, both in vitro and in vivo in a xenograft model of breast cancer. Both cell growth and colony formation in the soft agar assay, a hallmark of the transformation phenotype, were preferentially suppressed in HER2-overexpressing cell lines at low concentrations of CDDO, whereas growth-inhibitory effects at high concentrations did not correlate with the expression level of HER2. CDDO dose-dependently inhibited phosphorylation of HER2 in HER2-overexpressing cells and diminished HER2 kinase activity in vitro. CDDO induced the transactivation of the nuclear receptor peroxisome proliferator-activated receptor-gamma in both vector control and HER2-transfected MCF7 cells. Dose-response studies showed that the growth inhibition seen at lower concentrations of CDDO correlated with induction of the tumor suppressor gene caveolin-1, which is known to inhibit breast cancer cell growth. CDDO also reduced cyclin D1 mRNA and protein expression. In vivo studies with liposomally encapsulated CDDO showed complete abrogation of the growth of the highly tumorigenic MCF7/HER2 cells in a xenograft model of breast cancer. These findings provide the first in vitro and in vivo evidence that CDDO effectively inhibits HER2 tyrosine kinase activity and potently suppresses the growth of HER2-overexpressing breast cancer cells and suggest that CDDO has a therapeutic potential in advanced breast cancer.  相似文献   

6.
目的研究TNF-α对乳腺癌的影响。方法采用RT-PCR和WesternBlotting分析30例乳腺浸润性导管癌及癌旁正常乳腺组织,乳腺正常上皮细胞系及乳腺癌细胞系中TNF-α的表达情况;采用流式细胞术观察TNF-α对乳腺癌细胞凋亡的影响。结果RT-PCR和Western Blotting结果碌示,TNF-αmRNA和蛋白在乳腺癌组织中表达都明显低于配对的癌旁正常组织(P〈0.05),在乳腺上皮细胞系中表达均高于乳腺癌三利一细胞系,流式细胞术检测结果显示与未处理组桐比.经TNF-α处理的MDA-MB-435S(16.7±0.31)和MCF7(18.6±0.42)细胞的凋亡率明显增加,差异均有统计学意义(P〈0.05)。结论TNF-α可促进乳腺癌细胞的凋亡,TNF-α可为乳腺癌的治疗提供新靶点。  相似文献   

7.
8.
Tamoxifen, a selective estrogen receptor (ER) modulator, is the most widely prescribed hormonal therapy treatment for breast cancer. Despite the benefits of tamoxifen therapy, almost all tamoxifen-responsive breast cancer patients develop resistance to therapy. In addition, tamoxifen displays estrogen-like effects in the endometrium increasing the incidence of endometrial cancer. New therapeutic strategies are needed to circumvent tamoxifen resistance in breast cancer as well as tamoxifen toxicity in endometrium. Organic selenium compounds are highly effective chemopreventive agents with well-documented benefits in reducing total cancer incidence and mortality rates for a number of cancers. The present study shows that the organic selenium compound methylseleninic acid (MSA, 2.5 micromol/L) can potentiate growth inhibition of 4-hydroxytamoxifen (10(-7) mol/L) in tamoxifen-sensitive MCF-7 and T47D breast cancer cell lines. Remarkably, in tamoxifen-resistant MCF-7-LCC2 and MCF7-H2Delta16 breast cancer cell lines and endometrial-derived HEC1A and Ishikawa cells, coincubation of 4-hydroxytamoxifen with MSA resulted in a marked growth inhibition that was substantially greater than MSA alone. Growth inhibition by MSA and MSA + 4-hydroxytamoxifen in all cell lines was preceded by a specific decrease in ER(alpha) mRNA and protein without an effect on ER(beta) levels. Estradiol and 4-hydroxytamoxifen induction of endogenous ER-dependent gene expression (pS2 and c-myc) as well as ER-dependent reporter gene expression (ERE(2)e1b-luciferase) was also attenuated by MSA in all cell lines before effect on growth inhibition. Taken together, these data strongly suggest that specific decrease in ER(alpha) levels by MSA is required for both MSA potentiation of the growth inhibitory effects of 4-hydroxytamoxifen and resensitization of tamoxifen-resistant cell lines.  相似文献   

9.
Gene rearrangement: a novel mechanism for MDR-1 gene activation.   总被引:6,自引:0,他引:6       下载免费PDF全文
Drug resistance, a major obstacle to cancer chemotherapy, can be mediated by MDR-1/P-glycoprotein. Deletion of the first 68 residues of MDR-1 in an adriamycin-selected cell line after a 4;7 translocation, t(4q;7q), resulted in a hybrid mRNA containing sequences from both MDR-1 and a novel chromosome 4 gene. Further selection resulted in amplification of a hybrid gene. Expression of the hybrid mRNA was controlled by the chromosome 4 gene, providing a model for overexpression of MDR-1. Additional hybrid mRNAs in other drug-selected cell lines and in patients with refractory leukemia, with MDR-1 juxtaposed 3' to an active gene, establishes random chromosomal rearrangements with overexpression of hybrid MDR-1 mRNAs as a mechanism of acquired drug resistance.  相似文献   

10.
The microtubule-associated protein Tau has been reported to be a predictive factor for clinical response to taxanes in metastatic breast cancer. We generated a panel of eight taxane-resistant variants from four human breast cancer cell lines (MCF-7, T-47D, MDA-MB-231, and BT-549). Four variants had higher levels of Tau compared with their T-47D and MDA-MB-231 parental cells. Using isoform-specific primers, we found that Tau 0N, 1N, 2N, 3R, and 4R isoforms are overexpressed in the resistant variants, as is Tau exon 6 but not exons 4A or 8. To determine whether Tau overexpression produces resistance to taxanes, we derived three independent T-47D clones stably overexpressing Tau 3R and 4R isoforms. Tau overexpression did not result in taxane resistance compared with parental cells transfected with vector alone. We then knocked down Tau expression in three cell lines that expressed Tau constitutively (MCF-7 and ZR-75-1 breast cancer cells, and OVCAR-3 ovarian cancer cells). Lentivirus-mediated silencing of Tau expression in MCF-7 and OVCAR-3 cells did not result in increased taxane sensitivity compared with luciferase short hairpin RNA-infected cells and uninfected parental cells. Transient silencing using Tau-specific small interfering RNAs also did not alter taxane sensitivity relative to nontargeting controls in both MCF-7 and ZR-75-1 cells. These results show that neither overexpression nor depletion of Tau modulates cellular sensitivity to taxanes. Although Tau overexpression has been reported to be a predictive marker of taxane resistance, it is not likely to be a direct mechanism of taxane resistance in breast cancer.  相似文献   

11.
The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi) cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.  相似文献   

12.
HER2, a member of the human epidermal growth factor (EGF) receptor family, not only plays important roles in the progression of breast cancer tumorigenesis and metastasis, but may protect cancer cells from conventional cytotoxic therapies as well. In the current study, we evaluated the effect of targeting HER2 on radiosensitization of human breast cancer cells. Using six breast cancer cell lines with various levels of HER2 (BT474, SKBR3, MDA453, MCF7, ZR75B, and MDA468), we found that trastuzumab (Herceptin), a humanized monoclonal antibody that may inhibit breast cancer cell proliferation but does not induce apoptosis when used alone, enhanced radiation-induced apoptosis of the cells in a HER2 level-dependent manner. We furthered this study in MCF7 cells transfected for high levels of HER2 (MCF7HER2). Compared with parental or control vector-transfected MCF7 cells, MCF7HER2 cells showed increased phosphorylation of at least two important HER2 downstream molecules, protein kinase B/Akt and mitogen-activated protein kinase (MAPK), and increased resistance to radiotherapy, as shown by reduced induction of apoptosis and increased cell clonogenic survival after radiation. Exposure of the cells to trastuzumab down-regulated the levels of HER2 and reduced phosphorylation levels of Akt and MAPK in MCF7HER2 cells, and sensitized these cells to radiotherapy. When specific inhibitors of the phosphatidylinositol 3-kinase (PI3-K) and MAPK kinase (MEK) pathways were used, we found that exposure of MCF7HER2 cells to the PI3-K inhibitor LY294002 inhibited Akt phosphorylation and radiosensitized the cells, whereas the radiosensitization effect by the MEK inhibitor PD98059 was relatively weaker, albeit the phosphorylation of MAPK was reduced by PD98059 treatment. Our results indicate that the PI3-K pathway might be the major pathway for trastuzumab-mediated radiosensitization of breast cancer cells.  相似文献   

13.
背景:国内外研究证明乳腺癌干细胞可能是起始乳腺癌生长及辅助治疗后复发和远处转移的根源。目的:观察5-氟尿嘧啶对人乳腺癌MCF7细胞Oct4、Bmi-1表达的影响。方法:应用0.1mg/L5-氟尿嘧啶处理MCF7,RT-PCR检测处理前G0及处理后6代细胞G1~G6中Oct4、Bmi-1 mRNA的表达,免疫细胞化学检测处理前G0、G1~G5中Oct4的表达。结果与结论:5-氟尿嘧啶处理后,Oct4、Bmi-1 mRNA表达水平在G3和G5均较处理前明显增高,OCT4蛋白表达呈现出降低-升高-更高-降低-升高的趋势。提示MCF7中可能存在肿瘤干细胞样细胞;5-氟尿嘧啶可能诱导MCF7中肿瘤干细胞样细胞的数量或比例增加。  相似文献   

14.
Resistance to anticancer drugs and consequent failure of chemotherapy is a complex problem severely limiting therapeutic options in metastatic cancer. Many studies have shown a role for drug efflux pumps of the ATP-binding cassette transporters family in the development of drug resistance. ClC-3, a member of the CLC family of chloride channels and transporters, is expressed in intracellular compartments of neuronal cells and involved in vesicular acidification. It has previously been suggested that acidification of intracellular organelles can promote drug resistance by increasing drug sequestration. Therefore, we hypothesized a role for ClC-3 in drug resistance. Here, we show that ClC-3 is expressed in neuroendocrine tumor cell lines, such as BON, LCC-18, and QGP-1, and localized in intracellular vesicles co-labeled with the late endosomal/lysosomal marker LAMP-1. ClC-3 overexpression increased the acidity of intracellular vesicles, as assessed by acridine orange staining, and enhanced resistance to the chemotherapeutic drug etoposide by almost doubling the IC(50) in either BON or HEK293 cell lines. Prevention of organellar acidification, by inhibition of the vacuolar H(+)-ATPase, reduced etoposide resistance. No expression of common multidrug resistance transporters, such as P-glycoprotein or multidrug-related protein-1, was detected in either the BON parental cell line or the derivative clone overexpressing ClC-3. The probable mechanism of enhanced etoposide resistance can be attributed to the increase of vesicular acidification as consequence of ClC-3 overexpression. This study therefore provides first evidence for a role of intracellular CLC proteins in the modulation of cancer drug resistance.  相似文献   

15.
Multidrug resistance of tumours is one of the most important factors that leads to chemotherapy failure. A multidrug-resistant breast cancer cell line, MCF-7/Taxol, was established from the drug-sensitive parent cell line MCF-7. The biological properties of MCF-7/Taxol, including its drug resistance profile and profile of paclitaxel binding proteins, were analysed and compared with the parent cell line. A number of paclitaxel binding proteins were present in MCF-7 cells but absent from MCF-7/Taxol cells, namely heat shock protein 90, actinin and dermcidin precursor. The identification of differential paclitaxel binding proteins between the multidrug-resistant MCF-7/Taxol cell line and the parent drug-sensitive cell line MCF-7 provides insight into possible mechanisms involved in resistance to these chemotherapy drugs.  相似文献   

16.
Sclareol is a labdane-type diterpene that has demonstrated a significant cytotoxic activity against human leukemic cell lines. Here, we report the effect of sclareol against the human breast cancer cell lines MN1 and MDD2 derived from the parental cell line, MCF7. MN1 cells express functional p53, whereas MDD2 cells do not express p53. Flow cytometry analysis of the cell cycle indicated that sclareol was able to inhibit DNA synthesis induce arrest at the G(0/1) phase of the cycle apoptosis independent of p53. Sclareol-induced apoptosis was further assessed by detection of fragmented DNA in the cells. Furthermore, sclareol enhanced the activity of known anticancer drugs, doxorubicin, etoposide and cisplatinum, against MDD2 breast cancer cell line.  相似文献   

17.
18.
Resistance to natural product chemotherapy drugs is a major obstacle to successful cancer treatment. This type of resistance is often acquired in response to drug exposure; however, the mechanisms of this adverse reaction are complex and elusive. Here, we have studied acquired resistance to Adriamycin, Vinca alkaloids, and etoposide in MCF-7 breast cancer cells, KB-3-1 epidermoid carcinoma cells, and other cancer cell lines to determine if there is an association between expression of glucosylceramide synthase, the enzyme catalyzing ceramide glycosylation to glucosylceramide, and the multidrug-resistant (MDR) phenotype. This work shows that glucosylceramide levels increase concomitantly with increased drug resistance in the KB-3-1 vinblastine-resistant sublines KB-V.01, KB-V.1, and KB-V1 (listed in order of increasing MDR). The levels of glucosylceramide synthase mRNA, glucosylceramide synthase protein, and P-glycoprotein (P-gp) also increased in parallel. Increased glucosylceramide levels were also present in Adriamycin-resistant KB-3-1 sublines KB-A.05 and KB-A1. In breast cancer, detailed analysis of MCF-7 wild-type and MCF-7-AdrR cells (Adriamycin-resistant) demonstrated enhanced glucosylceramide synthase message and protein, P-gp message and protein, and high levels of glucosylceramide in resistant cells. Similar results were seen in vincristine-resistant leukemia, etoposide-resistant melanoma, and Adriamycin-resistant colon cancer cell lines. Cell-free glucosylceramide synthase activity was higher in lysates obtained from drug-resistant cells. Lastly, glucosylceramide synthase promoter activity was 15-fold higher in MCF-7-AdrR compared with MCF-7 cells. We conclude that selection pressure for resistance to natural product chemotherapy drugs selects for enhanced ceramide metabolism through glucosylceramide synthase in addition to enhanced P-gp expression. A possible connection between glucosylceramide synthase and P-gp in drug resistance biology is suggested.  相似文献   

19.
Kinesin-5 inhibitors (K5I) are promising antimitotic cancer drug candidates. They cause prolonged mitotic arrest and death of cancer cells, but their full range of phenotypic effects in different cell types has been unclear. Using time-lapse microscopy of cancer and normal cell lines, we find that a novel K5I causes several different cancer and noncancer cell types to undergo prolonged arrest in monopolar mitosis. Subsequent events, however, differed greatly between cell types. Normal diploid cells mostly slipped from mitosis and arrested in tetraploid G(1), with little cell death. Several cancer cell lines died either during mitotic arrest or following slippage. Contrary to prevailing views, mitotic slippage was not required for death, and the duration of mitotic arrest correlated poorly with the probability of death in most cell lines. We also assayed drug reversibility and long-term responses after transient drug exposure in MCF7 breast cancer cells. Although many cells divided after drug washout during mitosis, this treatment resulted in lower survival compared with washout after spontaneous slippage likely due to chromosome segregation errors in the cells that divided. Our analysis shows that K5Is cause cancer-selective cell killing, provides important kinetic information for understanding clinical responses, and elucidates mechanisms of drug sensitivity versus resistance at the level of phenotype.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号