首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Zhang J  Niu C  Ye L  Huang H  He X  Tong WG  Ross J  Haug J  Johnson T  Feng JQ  Harris S  Wiedemann LM  Mishina Y  Li L 《Nature》2003,425(6960):836-841
Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.  相似文献   

2.
B A Scheven  J W Visser  P J Nijweide 《Nature》1986,321(6065):79-81
It is well established that the osteoclast is formed by fusion of post-mitotic, mononuclear precursors derived from circulating progenitor cells. However, the precise haematopoietic origin of the osteoclast is unknown. We have investigated this here by fractionating mouse bone marrow and isolating haematopoietic stem cells using a three-step method combining equilibrium density centrifugation and two fluorescence-activated cell sortings (FACS), and have tested the ability of each bone marrow fraction, including highly purified haematopoietic stem cells, to generate osteoclasts during co-culture with preosteoclast-free embryonic long bones. The osteoclast-forming capacity was found to increase with increasing stem cell purity. On the other hand, the culture time needed for osteoclast formation also increased with purification, suggesting the presence of progressively more immature progenitor cells. The pluripotent haematopoietic stem cell fractions with the highest purity needed preincubation with a stem cell-activating factor (interleukin-3) to activate the predominantly quiescent stem cells in vitro.  相似文献   

3.
S Huang  L W Terstappen 《Nature》1992,360(6406):745-749
Haematopoietic stem cells are a population of cells capable both of self renewal and of differentiation into a variety of haematopoietic lineages. Enrichment techniques of human haematopoietic stem cells have used the expression of CD34, present on bone marrow progenitor cells. But most CD34+ bone marrow cells are committed to their lineage, and more recent efforts have focused on the precise characterization of the pluripotent subset of CD34+ cells. Here we report the characterization of two distinct subsets of pluripotent stem cells from human fetal bone marrow, a CD34+, HLA-DR+, CD38- subset that can differentiate into all haematopoietic lineages, and a distinct more primitive subset, that is CD34+, HLA-DR-, CD38-, that can differentiate into haematopoietic precursors and stromal cells capable of supporting the differentiation of these precursors. These data represent, to our knowledge, the first identification of a single cell capable of reconstituting the haematopoietic cells and their associated bone marrow microenvironment.  相似文献   

4.
Mizutani K  Yoon K  Dang L  Tokunaga A  Gaiano N 《Nature》2007,449(7160):351-355
During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.  相似文献   

5.
The mammalian heart has a very limited regenerative capacity and, hence, heals by scar formation. Recent reports suggest that haematopoietic stem cells can transdifferentiate into unexpected phenotypes such as skeletal muscle, hepatocytes, epithelial cells, neurons, endothelial cells and cardiomyocytes, in response to tissue injury or placement in a new environment. Furthermore, transplanted human hearts contain myocytes derived from extra-cardiac progenitor cells, which may have originated from bone marrow. Although most studies suggest that transdifferentiation is extremely rare under physiological conditions, extensive regeneration of myocardial infarcts was reported recently after direct stem cell injection, prompting several clinical trials. Here, we used both cardiomyocyte-restricted and ubiquitously expressed reporter transgenes to track the fate of haematopoietic stem cells after 145 transplants into normal and injured adult mouse hearts. No transdifferentiation into cardiomyocytes was detectable when using these genetic techniques to follow cell fate, and stem-cell-engrafted hearts showed no overt increase in cardiomyocytes compared to sham-engrafted hearts. These results indicate that haematopoietic stem cells do not readily acquire a cardiac phenotype, and raise a cautionary note for clinical studies of infarct repair.  相似文献   

6.
During mammalian ontogeny, haematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, where haematopoiesis occurs throughout adulthood. Unique features of bone that contribute to a microenvironmental niche for stem cells might include the known high concentration of calcium ions at the HSC-enriched endosteal surface. Cells respond to extracellular ionic calcium concentrations through the seven-transmembrane-spanning calcium-sensing receptor (CaR), which we identified as being expressed on HSCs. Here we show that, through the CaR, the simple ionic mineral content of the niche may dictate the preferential localization of adult mammalian haematopoiesis in bone. Antenatal mice deficient in CaR had primitive haematopoietic cells in the circulation and spleen, whereas few were found in bone marrow. CaR-/- HSCs from fetal liver were normal in number, in proliferative and differentiative function, and in migration and homing to the bone marrow. Yet they were highly defective in localizing anatomically to the endosteal niche, behaviour that correlated with defective adhesion to the extracellular matrix protein, collagen I. CaR has a function in retaining HSCs in close physical proximity to the endosteal surface and the regulatory niche components associated with it.  相似文献   

7.
8.
9.
E Spooncer  B I Lord  T M Dexter 《Nature》1985,316(6023):62-64
Stromal cells play a critical role in haematopoiesis, both in a permissive and, probably, in a directive manner. Study of the interactions between stromal cells and haematopoietic stem cells, however, is difficult to perform using whole bone marrow, in which stem cells are indistinguishable from precursor cells and maturing haematopoietic cells, and where stromal and haematopoietic cells co-exist in a heterogeneous mixture. We have purified primitive haematopoietic spleen colony-forming cells (CFU-S) using fluorescence-activated cell sorting (FACS) and produced CFU-S populations which approach 100% purity (ref. 6 and B.I.L. and E.S., in preparation). This cell population is devoid of significant stromal cells and mature haematopoietic cells. Here, we report that when purified CFU-S are seeded onto a stromal adherent layer in vitro, foci of haematopoietic cells develop within the stroma followed by production of a wave of maturing and mature progeny. However, self-renewal of CFU-S does not occur and haematopoietic activity rapidly declines, indicating that caution should be applied in the use of highly purified stem cells for human bone marrow transplantation.  相似文献   

10.
Haematopoietic stem cells (HSCs) must achieve a balance between quiescence and activation that fulfils immediate demands for haematopoiesis without compromising long-term stem cell maintenance, yet little is known about the molecular events governing this balance. Phosphatase and tensin homologue (PTEN) functions as a negative regulator of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway, which has crucial roles in cell proliferation, survival, differentiation and migration. Here we show that inactivation of PTEN in bone marrow HSCs causes their short-term expansion, but long-term decline, primarily owing to an enhanced level of HSC activation. PTEN-deficient HSCs engraft normally in recipient mice, but have an impaired ability to sustain haematopoietic reconstitution, reflecting the dysregulation of their cell cycle and decreased retention in the bone marrow niche. Mice with PTEN-mutant bone marrow also have an increased representation of myeloid and T-lymphoid lineages and develop myeloproliferative disorder (MPD). Notably, the cell populations that expand in PTEN mutants match those that become dominant in the acute myeloid/lymphoid leukaemia that develops in the later stages of MPD. Thus, PTEN has essential roles in restricting the activation of HSCs, in lineage fate determination, and in the prevention of leukaemogenesis.  相似文献   

11.
D A Williams  M Rios  C Stephens  V P Patel 《Nature》1991,352(6334):438-441
The self-renewal and differentiation of haematopoietic stem cells occurs in vivo and in vitro in direct contact with cells making up the haematopoietic microenvironment. In this study we used adhesive ligands and blocking antibodies to identify stromal cell-derived extracellular matrix proteins involved in promoting attachment of murine haematopoietic stem cells. Here we report that day-12 colony-forming-unit spleen (CFU-S12)5 cells and reconstituting haematopoietic stem cells attach to the C-terminal, heparin-binding fragment of fibronectin by recognizing the CS-1 peptide of the alternatively spliced non-type III connecting segment (IIICS) of human plasma fibronectin. Furthermore, CFU-S12 stem cells express the alpha 4 subunit of the VLA-4 integrin receptor, which is known to be a receptor for the CS-1 sequence, and monoclonal antibodies against the integrin alpha 4 subunit of VLA-4 block adhesion of CFU-S12 stem cells to plates coated with the C-terminal fibronectin fragment. Finally, polyclonal antibodies against the integrin beta 1 subunit of VLA-4 inhibit the formation of CFU-S12-derived spleen colonies and medullary haematopoiesis in vivo following intravenous infusion of antibody-treated bone marrow cells.  相似文献   

12.
Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30?days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (T(reg)) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with T(reg) cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. T(reg) cells seem to participate in creating a localized zone where HSPCs reside and where T(reg) cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.  相似文献   

13.
Under conditions of tissue injury, myocardial replication and regeneration have been reported. A growing number of investigators have implicated adult bone marrow (BM) in this process, suggesting that marrow serves as a reservoir for cardiac precursor cells. It remains unclear which BM cell(s) can contribute to myocardium, and whether they do so by transdifferentiation or cell fusion. Here, we studied the ability of c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells to regenerate myocardium in an infarct model. Cells were isolated from transgenic mice expressing green fluorescent protein (GFP) and injected directly into ischaemic myocardium of wild-type mice. Abundant GFP+ cells were detected in the myocardium after 10 days, but by 30 days, few cells were detectable. These GFP+ cells did not express cardiac tissue-specific markers, but rather, most of them expressed the haematopoietic marker CD45 and myeloid marker Gr-1. We also studied the role of circulating cells in the repair of ischaemic myocardium using GFP+-GFP- parabiotic mice. Again, we found no evidence of myocardial regeneration from blood-borne partner-derived cells. Our data suggest that even in the microenvironment of the injured heart, c-kit-enriched BM cells, Lin- c-kit+ BM cells and c-kit+ Thy1.1(lo) Lin- Sca-1+ long-term reconstituting haematopoietic stem cells adopt only traditional haematopoietic fates.  相似文献   

14.
Micchelli CA  Perrimon N 《Nature》2006,439(7075):475-479
Adult stem cells maintain organ systems throughout the course of life and facilitate repair after injury or disease. A fundamental property of stem and progenitor cell division is the capacity to retain a proliferative state or generate differentiated daughter cells; however, little is currently known about signals that regulate the balance between these processes. Here, we characterize a proliferating cellular compartment in the adult Drosophila midgut. Using genetic mosaic analysis we demonstrate that differentiated cells in the epithelium arise from a common lineage. Furthermore, we show that reduction of Notch signalling leads to an increase in the number of midgut progenitor cells, whereas activation of the Notch pathway leads to a decrease in proliferation. Thus, the midgut progenitor's default state is proliferation, which is inhibited through the Notch signalling pathway. The ability to identify, manipulate and genetically trace cell lineages in the midgut should lead to the discovery of additional genes that regulate stem and progenitor cell biology in the gastrointestinal tract.  相似文献   

15.
Transplanted bone marrow regenerates liver by cell fusion   总被引:130,自引:0,他引:130  
Vassilopoulos G  Wang PR  Russell DW 《Nature》2003,422(6934):901-904
Results from several experimental systems suggest that cells from one tissue type can form other tissue types after transplantation. This could be due to the presence of multipotential or several types of adult stem cells in donor tissues, or alternatively, to fusion of donor and recipient cells. In a model of tyrosinaemia type I, mice with mutations in the fumarylacetoacetate hydrolase gene (Fah-/-) regain normal liver function after transplantation of Fah+/+ bone marrow cells, and form regenerating liver nodules with normal histology that express Fah. Here we show that these hepatic nodules contain more mutant than wild-type Fah alleles, and that their hepatocytes express both donor and host genes, consistent with polyploid genome formation by fusion of host and donor cells. Using bone marrow cells marked with integrated foamy virus vectors that express green fluorescent protein, we identify common proviral junctions in hepatic nodules and haematopoietic cells. We also show that the haematopoietic donor genome adopts a more hepatocyte-specific expression profile after cell fusion, as the wild-type Fah gene was activated and the pan-haematopoietic CD45 marker was no longer expressed.  相似文献   

16.
Dystrophin expression in the mdx mouse restored by stem cell transplantation.   总被引:180,自引:0,他引:180  
The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.  相似文献   

17.
A Joyner  G Keller  R A Phillips  A Bernstein 《Nature》1983,305(5934):556-558
The haematopoietic system is made up of a hierarchy of cells with different developmental, functional and proliferative capacities. Although cellular diversity appears to arise from the commitment and maturation of stem cells, the molecular basis for this differentiation process is unknown. The introduction of cloned DNA sequences into haematopoietic progenitor cells would provide a novel approach for studying this differentiating in vivo system. One laboratory has reported DNA-mediated transfer of genes into mouse bone marrow cells. However, retroviruses offer a number of advantages over DNA-mediated gene transfer procedures, including high efficiency infection of a wide range of cell types in vitro and in vivo, stable and low copy integration into the host chromosome, and a defined integrated provirus structure. For these reasons recombinant DNA techniques have been utilized to construct high efficiency retrovirus vectors expressing foreign genes. We demonstrate here, using such a retrovirus vector, the transfer of a dominant selectable drug-resistance gene into defined classes of mouse haematopoietic progenitor cells. These observations should facilitate the development of molecular genetic approaches to fundamental and clinical problems in haematopoiesis.  相似文献   

18.
Normal haematopoietic cell regulation involves interaction between marrow stromal cells and haematopoietic progenitor cells which may be facilitated by specific recognition and adhesion. Some leukaemogenic events might produce a selective growth advantage by altering this regulatory network, possibly by diminishing the capacities of cells to adhere to stromal elements. Using an in vitro culture system which allows investigation of adhesion to stromal layers and subsequent colony formation by blast colony-forming cells (B1-CFC) in normal marrow and Ph+ chronic myeloid leukaemic (CML) blood, we compared the adhesive properties of normal and malignant progenitor cells. We present evidence that altered adhesive interactions between primitive progenitor cells and marrow stromal cells occur in CML.  相似文献   

19.
20.
Endothelial and perivascular cells maintain haematopoietic stem cells   总被引:4,自引:0,他引:4  
Ding L  Saunders TL  Enikolopov G  Morrison SJ 《Nature》2012,481(7382):457-462
Several cell types have been proposed to create niches for haematopoietic stem cells (HSCs). However, the expression patterns of HSC maintenance factors have not been systematically studied and no such factor has been conditionally deleted from any candidate niche cell. Thus, the cellular sources of these factors are undetermined. Stem cell factor (SCF; also known as KITL) is a key niche component that maintains HSCs. Here, using Scf(gfp) knock-in mice, we found that Scf was primarily expressed by perivascular cells throughout the bone marrow. HSC frequency and function were not affected when Scf was conditionally deleted from haematopoietic cells, osteoblasts, nestin-cre- or nestin-creER-expressing cells. However, HSCs were depleted from bone marrow when Scf was deleted from endothelial cells or leptin receptor (Lepr)-expressing perivascular stromal cells. Most HSCs were lost when Scf was deleted from both endothelial and Lepr-expressing perivascular cells. Thus, HSCs reside in a perivascular niche in which multiple cell types express factors that promote HSC maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号