首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
An analogue of the DNA binding compound Hoechst 33258, which has the para hydroxyl group altered to be at the meta position, together with the replacement of one benzimidazole group by pyridylimidazole, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The X-ray structure has been determined at 2.2 A resolution and refined to an R factor of 20.1%. The ligand binds in the minor groove at the sequence 5'-AATTC with the bulky piperazine group extending over the CxG base pair. This binding is stabilised by hydrogen bonding and numerous close van der Waals contacts to the surface of the groove walls. The meta-hydroxyl group was found in two distinct orientations, neither of which participates in direct hydrogen bonds to the exocyclic amino group of a guanine base. The conformation of the drug differs from that found previously in other X-ray structures of Hoechst 33258-DNA complexes. There is significant variation between the minor groove widths in the complexes of Hoechst 33258 and the meta-hydroxyl derivative as a result of these conformational differences. Reasons are discussed for the inability of this derivative to actively recognise guanine.  相似文献   

2.
2D NMR spectroscopic methods have been used to determine the structure of the adduct formed between the antitumor antibiotic hedamycin and the oligodeoxyribonucleotide duplex d(CACGTG)2. Evidence for both intercalation and alkylation in the adduct was observed, and a model for the binding interaction was constructed based on intermolecular NOEs and distance-restrained molecular dynamics. In our computationally refined model, the anthrapyrantrione chromophore of hedamycin is intercalated between the 5'-CG-3' bases with the two aminosugar groups placed in the minor groove and the six carbon bisepoxide side chain located in the major groove. The anglosamine sugar attached at C8 is oriented in the 3' direction relative to the intercalation site, while the N,N-dimethylvancosamine attached at C10 is oriented to the 5' side, with each aminosugar wedged between a guanine exocyclic amino group and one of the groove walls. The terminal epoxide carbon C18 is covalently bound to the N7 atom of the central guanine, as evidenced by lability of the C8 hydrogen of this purine upon reaction with hedamycin. Our binding model places the C10-attached N,N-dimethylvancosamine of hedamycin in van der Waals contact with the alkylated strand. A strong NOE contact verifies the close proximity of the terminal methyl group (C19) of the bisepoxide side chain to the methyl group of the thymine on the 3' side of the alkylated guanine. This, in conjunction with other data, suggests hydrophobic interactions between the bisepoxide chain and the floor of the major groove may contribute to sequence recognition. Furthermore, it is proposed that the 5'-CGT sequence selectivity of hedamycin arises, in part, from complementarity in shape between the chromophore substituents and the major and minor groove at the binding site.  相似文献   

3.
Spectroscopic, calorimetric, DNA cleavage, electrophoretic, and computer modeling techniques have been employed to characterize the DNA binding and topoisomerase poisoning properties of three protoberberine analogs, 8-desmethylcoralyne (DMC), 5,6-dihydro-8-desmethylcoralyne (DHDMC), and palmatine, which differ in the chemical structures of their B- and/or D-rings. DNA topoisomerase-mediated cleavage assays revealed that these compounds were unable to poison mammalian type II topoisomerase. By contrast, the three protoberberine analogs poisoned human topoisomerase I according to the following hierarchy: DHDMC > DMC > palmatine. DNA binding by all three protoberberine analogs induced negative flow linear dichroism signals as well as unwinding of the host duplex. These two observations are consistent with an intercalative mode of protoberberine binding to duplex DNA. However, a comparison of the DNA binding properties for DMC and DHDMC, which differ only by the state of saturation at the 5,6 positions of the B-ring, revealed that the protoberberine analogs do not "behave" like classic DNA intercalators. Specifically, saturation of the 5-6 double bond in the B-ring of DMC, thereby converting it to the DHDMC molecule, was associated with enhanced DNA unwinding as well as a reversal of DNA binding preference from a DNA duplex with an inaccessible or occluded minor groove {poly[d(G-C)]2} to DNA duplexes with accessible or unobstructed minor grooves {poly[d(A-T)]2 and poly[d(I-C)]2}. In addition, a comparison of the DNA binding properties for DHDMC and palmatine revealed that transferring the 11-methoxy moiety on the D-ring of DHDMC to the 9 position, thereby converting it to palmatine, was associated with a reduction in binding affinity for both duplexes with unobstructed minor grooves as well as for duplexes with occluded minor grooves. These DNA binding properties are consistent with a "mixed-mode" DNA binding model for protoberberines in which a portion of the ligand molecule intercalates into the double helix, while the nonintercalated portion of the ligand molecule protrudes into the minor groove of the host duplex, where it is thereby available for interactions with atoms lining the floor and/or walls of the minor groove. Furthermore, saturation at the 5,6 positions of the B-ring, which causes the A-ring to be tilted relative to the plane formed by rings C and D, appears to stabilize the interaction between the host duplex and the minor groove-directed portion of the protoberberine ligand. Computer modeling studies on the DHDMC-poly[d(A-T)]2 complex suggest that this interaction may involve van der Waals contacts between the ligand A-ring and backbone sugar atoms lining the minor groove of the host duplex. The hierarchy of topoisomerase I poisoning noted above suggests that this minor groove-directed interaction may play an important role in topoisomerase I poisoning by protoberberine analogs. In the aggregate, our results presented here, coupled with the recent demonstration of topoisomerase I poisoning by minor groove-binding terbenzimidazoles [Sun, Q., Gatto, B., Yu, C., Liu, A. , Liu, L. F., & LaVoie, E. J. (1995) J. Med. Chem. 38, 3638-3644], suggest that minor groove-directed ligand-DNA interactions may be of general importance in the poisoning of topoisomerase I.  相似文献   

4.
The X-ray crystal structure of the complex between the synthetic antitumour and antiviral DNA binding ligand SN 7167 and the DNA oligonucleotide d(CGCGAATTCGCG)2 has been determined to an R factor of 18.3% at 2.6 A resolution. The ligand is located within the minor groove and covers almost 6 bp with the 1-methylpyridinium ring extending as far as the C9-G16 base pair and the 1-methylquinolinium ring lying between the G4-C21 and A5-T20 base pairs. The ligand interacts only weakly with the DNA, as evidenced by long range contacts and shallow penetration into the groove. This structure is compared with that of the complex between the parent compound SN 6999 and the alkylated DNA sequence d(CGC[e6G]AATTCGCG)2. There are significant differences between the two structures in the extent of DNA bending, ligand conformation and groove binding.  相似文献   

5.
6.
7.
In order to gain further insight into the molecular mechanism of arginine-dependent operator recognition by the hexameric Escherichia coli arginine repressor we have probed protein-DNA interactions in vitro and in vivo. We have extensively applied the chemical modification-protection and premodification-interference approach to two operators, the natural operator overlapping the P2 promoter of the carAB operon and a fully symmetrical consensus sequence. Backbone contacts were revealed by hydroxyl radical footprinting and phosphate ethylation interference. Base-specific contacts to purines and pyrimidines were revealed by methylation protection and premodification interference, KMnO4 and NH2OH.HCl-specific modification of thymine and cytosine residues, base-removal (depurination and depyrimidation), and base substitution (uracil and inosine). Additional information on the groove specificity of repressor binding was obtained by small ligand binding interference (distamycin and methyl green). In vivo, we measured the effects on the repressibility of 24 single base-pair substitutions obtained by saturation mutagenesis of half an Arg box in the carAB operator. The results of these experiments point to the conclusion that a hexameric arginine repressor molecule covers four turns of the helix, makes base-specific contacts to at least one guanine (G4 or G4') and two thymine (T3, T13', or T3', T13) residues in each one of four consecutive major grooves on one face of the helix and with four A-T/T-A base-pairs, comprising the adenine residues A9, 9', 12, 12' and the thymine residues T10, 10', 11, 11', in the two outermost minor grooves of the operator, on the very same face of the DNA molecule. The hydrophobic 5-methyl groups of four thymine residues (T3, 3', 13, 13') in each Arg box contribute to major groove-specific recognition via hydrophobic and/or van der Waals interactions. The importance of minor groove contacts was further supported by the drastic effect of distamycin binding interference. In vivo, the most pronounced drops in repressibility were occasioned by mutations at positions 10 (A-->G or C), 11 (T-->A or G) and 12 (A-->G, T or C).  相似文献   

8.
Three approximate free energy calculation methods are examined and applied to an example ligand design problem. The first of the methods uses a single simulation to estimate the relative binding free energies for related ligands that are not simulated. The second method is similar, except that it uses only first derivatives of free energy with respect to atomic parameters (most often charge, van der Waals equilibrium distance, and van der Waals well depth) to calculate free energy differences. The last method PROFEC (Pictorial Representation of Free Energy Components), generates contour maps that show how binding free energy changes when additional particles are added near the ligand. These three methods are applied to a benzamidine/trypsin complex. They each reproduce the general trends in the binding free energies, indicating that they might be useful for suggesting how ligands could be modified to improve binding and, consequently, useful in structure-based drug design.  相似文献   

9.
Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin-d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino-purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure-affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in design of novel sequence-specific DNA-binding agents.  相似文献   

10.
The solution structure of a complex between the DNA binding domain of a fungal GATA factor and a 13 base-pair oligonucleotide containing its physiologically relevant CGATAG target sequence has been determined by multidimensional nuclear magnetic resonance spectroscopy. The AREA DNA binding domain, from Aspergillus nidulans, possesses a single Cys2-Cys2 zinc finger module and a basic C-terminal tail, which recognize the CGATAG element via an extensive network of hydrophobic interactions with the bases in the major groove and numerous non-specific contacts along the sugar-phosphate backbone. The zinc finger core of the AREA DNA binding domain has the same global fold as that of the C-terminal DNA binding domain of chicken GATA-1. In contrast to the complex with the DNA binding domain of GATA-1 in which the basic C-terminal tail wraps around the DNA and lies in the minor groove, the structure of complex with the AREA DNA binding domain reveals that the C-terminal tail of the fungal domain runs parallel with the sugar phosphate backbone along the edge of the minor groove. This difference is principally attributed to amino acid substitutions at two positions of the AREA DNA binding domain (Val55, Asn62) relative to that of GATA-1 (Gly55, Lys62). The impact of the different C-terminal tail binding modes on the affinity and specificity of GATA factors is discussed.  相似文献   

11.
To target selectively the major groove of double-stranded B DNA, we have designed and synthesized a bis(arginyl) conjugate of a tricationic porphyrin (BAP). Its binding energies with a series of double-stranded dodecanucleotides, having in common a central d(CpG)2 intercalation site were compared. The theoretical results indicated a significant energy preference favoring major groove over minor groove binding and a preferential binding to a sequence encompassing the palindrome GGCGCC encountered in the Primary Binding Site of the HIV-1 retrovirus. Spectroscopic studies were carried out on the complexes of BAP with poly(dG-dC) and poly(dA-dT) and a series of oligonucleotide duplexes having either a GGCGCC, CCCGGG, or TACGTA sequence. The results of UV-visible and circular dichroism spectroscopies indicated that intercalation of the porphyrin takes place in poly(dG-dC) and all the oligonucleotides. Thermal denaturation studies showed that BAP increased significantly the melting temperature of the oligonucleotides having the GGCGCC sequence, whereas it produced only a negligible stabilization of sequences having CCCGGG or TACGTA in place of GGCGCC. This indicates a preferential binding of BAP to GGCGCC, fully consistent with the theoretical predictions. IR spectroscopy on d(GGCGCC)2 indicated that the guanine absorption bands, C6=O6 and N7-C8-H, were shifted by the binding of BAP, indicative of the interactions of the arginine arms in the major groove. Thus, the de novo designed compound BAP constitutes one of the very rare intercalators which, similar to the antitumor drugs mitoxantrone and ditercalinium, binds DNA in the major groove rather than in the minor groove.  相似文献   

12.
13.
Antigenic peptides are thought to bind to class I major histocompatibility complex (MHC) molecules through three modes of interaction: van der Waals interaction and, to a lesser extent, hydrogen bonding of anchor side chain atoms to residues comprising the binding pockets of the MHC molecule; hydrogen bonding of N- and C-termini to residues at the ends of the binding groove; and hydrogen bonding of peptide backbone atoms to residues lining the binding groove. To dissect the relative contribution of each of these interactions to class I MHC-peptide stability, a retro inverso (RI) analog of VSV-8. an H-2Kb restricted cytotoxic T lymphocyte (CTL) epitope and terminally modified variants of both VSV-8 and RI VSV-8 were synthesized and their ability to target H-2Kb bearing cells for CTL mediated lysis was compared. None of RI VSV-8 analogs elicited lysis of target cells by CTL specific for VSV-8 nor did they appear to compete with the native peptide for binding to H-2Kb. In contrast, terminally modified VSV-8 peptides elicited target lysis. These findings suggest that side chain topochemistry of the peptide is insufficient for stable peptide binding to H-2Kb; rather, hydrogen bonding of the peptide backbone atoms to H-2Kb side chain atoms appears to play a major role in the stability of the complex. Computer modeling confirmed that none of the RI analogs participate in the extensive hydrogen bonding network between the peptide backbone and the MHC molecule seen in the native structure.  相似文献   

14.
The structure of the Cro protein from bacteriophage lambda in complex with a 19 base-pair DNA duplex that includes the 17 base-pair consensus operator has been determined at 3.0 A resolution. The structure confirms the large changes in the protein and DNA seen previously in a crystallographically distinct low-resolution structure of the complex and, for the first time, reveals the detailed interactions between the side-chains of the protein and the base-pairs of the operator. Relative to the crystal structure of the free protein, the subunits of Cro rotate 53 degrees with respect to each other on binding DNA. At the same time the DNA is bent by 40 degrees through the 19 base-pairs. The intersubunit connection includes a region within the protein core that is structurally reminiscent of the "ball and socket" motif seen in the immunoglobulins and T-cell receptors. The crystal structure of the Cro complex is consistent with virtually all available biochemical and related data. Some of the interactions between Cro and DNA proposed on the basis of model-building are now seen to be correct, but many are different. Tests of the original model by mutagenesis and biochemical analysis corrected some but not all of the errors. Within the limitations of the crystallographic resolution it appears that operator recognition is achieved almost entirely by direct hydrogen-bonding and van der Waals contacts between the protein and the exposed bases within the major groove of the DNA. The discrimination of Cro between the operators OR3 and OR1, which differ in sequence at just three positions, is inferred to result from a combination of small differences, both favorable and unfavorable. A van der Waals contact at one of the positions is of primary importance, while the other two provide smaller, indirect effects. Direct hydrogen bonding is not utilized in this distinction.  相似文献   

15.
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.  相似文献   

16.
We have carried out a physicochemical and computational analysis on the stability of the intercalated structures formed by cytosine-rich DNA strands. In the computational study, the electrostatic energy components have been calculated using a Poisson-Boltzmann model, and the non-polar energy components have been computed with a van der Waals function and/or a term dependent on the solvent-accessible surface area of the molecules. The results have been compared with those obtained for Watson-Crick duplexes and with thermodynamic data derived from UV experiments. We have found that intercalated DNA is mainly stabilized by very favorable electrostatic interactions between hydrogen-bonded protonated and neutral cytosines, and by non-polar forces including the hydrophobic effect and enhanced van der Waals contacts. Cytosine protonation electrostatically promotes the association of DNA strands into a tetrameric structure. The electrostatic interactions between stacked C.C+ pairs are strongly attenuated by the reaction field of the solvent, and are modulated by a complex interplay of geometric and protonation factors. The forces stabilizing intercalated DNA must offset an entropic penalty due to the uptake of protons for cytosine protonation, at neutral pH, and also the electrostatic contribution to the solvation free energy. The latter energy component is less favorable for protonated DNA due to the partial neutralization of the negative charge of the molecule, and probably affects other protonated DNA and RNA structures such as C+-containing triplexes.  相似文献   

17.
To understand the recognition interactions between AT-containing alternating DNA and minor groove binding drugs, the crystal structures of the side-by-side binding of two distamycin molecules to the DNA octamers d(ICITACIC)2 and d(ICATATIC)2, referred to here as TA and ATAT, respectively, have been determined at 1.6 A and 2.2 A, respectively. Compared to the previous 2:1 all-IC d(ICICICIC)2-distamycin complex, the substitutions of the I x C base-pairs by the A x T base-pairs enable the interactions of the drug with its natural target to be studied. Both complexes assume side-by-side drug binding, isomorphous to the all IC counterpart in the tetragonal space group P4(1)22 (a = b = 28.03 A, c = 58.04 A and a = b = 27.86 A, c = 58.62 A, respectively). The ATAT complex also crystallized in a new polymorphic monoclinic space group C2 (a = 33.38 A, b = 25.33 A, c = 28.11 A and beta = 120.45 degrees) and was solved at 1.9 A resolution. The structures of the three double drug x DNA complexes are very similar, characterized by systematic hydrogen bonding and van der Waals interactions. Each drug hydrogen bonds with the bases of the proximal DNA strand only and stacks with the sugar moiety, while the side-by-side drugs themselves exhibit pyrrole ring-peptide stacking. The pyrrole-peptide interaction is crucial for the side-by-side binding mode of the distamycin/netropsin family of drugs. The purine-pyrimidine alternation is probably responsible for the striking alternation in the helical and backbone conformations. The structures are conserved between the pure IC complex and the AT substituted complexes but further details of the side-by-side binding to DNA are provided by the 1.6 A resolution structure of TA.  相似文献   

18.
We report new quantitative footprinting data which reveal differences in binding constants of bisquaternary ammonium heterocyclic compounds (BQA) with AT-rich DNA sites depending on the ligand structure and on the size and sequence of the DNA binding site. In an attempt to understand the dependence of binding affinity on the ligand structure we have performed quantum-chemical AM1 calculations on the BQA compounds and on subunits to explore the conformational space and to calculate the electronic and structural features of individual ligand conformations. Due to the properties of the rotatable backbone bonds, there is a large number of possible conformations with almost equal energy. We present a new method for the calculation of the radius of curvature of molecular structures. Assuming that strong binders should have a shape complementary to the DNA minor groove, this measure is used to select the optimum conformations for DNA-drug binding. The approach yields the correct ligand conformation for SN6999, for which an X-ray DNA-drug structure is known. The curvature of the optimum conformations of all ligands is compared with the experimental binding constants. A correlation is found between curvature and binding constant provided other structural factors do not vary. Therefore, we conclude that within structurally similar BQA compounds the extent of curvature is the relevant quantity which modulates the binding affinity.  相似文献   

19.
Conjugation of an anthracycline to a triplex-forming oligonucleotide (TFO) allows delivery of this drug to a specific DNA site, preserving the intercalation geometry of this class of anticancer agents. Conjugate 11, in which the TFO is linked via a hexamethylene bridge to the O-4 on the D ring of the anthraquinone moiety, affords the most stable triple helix, through intercalation of the planar chromophore between DNA bases and binding of both the TFO and the amino sugar to the major and the minor groove respectively.  相似文献   

20.
Two-dimensional NMR spectroscopy has been applied to study the solution binding of 4',6-diamidino-2-phenylindole (DAPI) to synthetic DNA duplex [d(GCGATCGC)]2. The structure of the complex at a molar ratio of 1:1 drug:duplex has been investigated. NMR results indicate that DAPI binds selectively in the minor groove of the DNA region containing only two A:T base pairs. The results disagree with conclusions drawn from footprinting experiments and show that the presence of the G3NH2 group in the minor groove does not prevent the binding. A molecular model is proposed that closely resembles the crystal structure previously published for the interaction of DAPI with the dodecamer [d(CGCGAATTCGCG)]2, containing four A:T base pairs in the binding site. In this model, DAPI lies in the minor groove, nearly isohelical, with its aromatic rings adjacent to H4' protons of T5 and C6 deoxyribose and the NH indole group oriented toward the DNA axis. The binding does not perturb the B-type conformation of the duplex, and the DNA oligomer conserves its 2-fold symmetry, indicating that fast exchange dynamics exist between the two stereochemically equivalent binding sites of the palindromic sequence. The binding constant and the exchange rate between free and bound species were also measured by NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号