首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and related compounds, have been identified as global pollutants and have shown their bioaccumulation into higher trophic levels in the food chain. PFCs have been found in remote areas far from sources, such as the Arctic. In this study spatial and temporal trends in the concentrations of selected PFCs were measured using archived liver samples of ringed seal (Phoca hispida) from East and West Greenland. The samples were collected in four different years at each location, between 1986 and 2003 in East Greenland and between 1982 and 2003 in West Greenland. PFOS was the major contributor to the burden of PFCs in samples, followed by perfluoroundecanoic acid (PFUnA). Perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were also detected in most samples. Perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonamide (PFOSA) were only found sporadically. Perfluorooctanoic acid was not found in detectable concentrations in any sample. Regression analysis of logarithmic transformed PFOS, PFDA, and PFUnA median concentrations indicated a significant temporal trend with increasing concentrations at both locations. A spatial trend in PFOS concentrations (ANOVA, p < 0.0001) was observed between the two sampling locations, with significantly higher concentrations in seals from East Greenland.  相似文献   

2.
Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.  相似文献   

3.
The purpose of this study was to determine the concentration trends of a nine-target-analyte homologous series of perfluorocarboxylates from six American Red Cross adult blood donor centers. A total of 645 serum and 600 plasma samples were obtained in 2000-2001 and 2006, respectively, with samples stratified for each 10-year (20-69) age- and sex-group per each location. Samples were extracted by protein precipitation and quantified by using tandem mass spectrometry. The nine perfluorocarboxylates were perfluorobutanoate (PFBA, C(3)F(7)CO(2)(-)), perfluoropentanoate (PFPeA, C(4)F(9)CO(2)(-)), perfluorohexanoate (PFHxA, C(5)F(11)CO(2)(-)), perfluoroheptanoate (PFHpA, C(6)F(13)CO(2)(-)), perfluorooctanoate (PFOA, C(7)F(15)CO(2)(-)), perfluorononanoate (PFNA, C(8)F(17)CO(2)(-)), perfluorodecanoate (PFDA, C(9)F(19)CO(2)(-)), perfluoroundecanoate (PFUnA,C(10)F(21)CO(2)(-)), and perfluorododecanoate (PFDoA, C(11)F(23)CO(2)(-)). The majority of measurements were less than the lower limit of quantitation for PFPeA, PFHxA, and PFDoA. For the remaining targeted analytes, the geometric mean serum and plasma concentrations (ng/mL) for 2000-2001 and 2006 were, respectively, as follows: PFBA 2.61 vs 0.33, PFHpA 0.13 vs 0.09, PFOA 4.70 vs 3.44, PFNA 0.57 vs 0.97, PFDA 0.16 vs 0.34, and PFUnA 0.10 vs 0.18. Estimates of the 95th percent tolerance limits (ng/mL) were as follows: PFBA 5.3 vs 1.4, PFHpA 0.4 vs 0.4, PFOA 12.3 vs 7.7, PFNA 1.4 vs 2.2, PFDA 0.4 vs 0.8, and PFUnA 0.3 vs 0.5. Important observations were the decline in PFBA and increase in PFNA, PFDA, and PFUnA concentrations between 2000-2001 and 2006. The longer chain length perfluorocarboxylates were also highly correlated with each other.  相似文献   

4.
Concentrations of perfluorochemicals (PFCs) including perfluoroalkylsulfonates (PFSAs) and perfluoroalkylcarboxylates (PFCAs) were determined in liver and serum of Baikal seals (Pusa sibirica) collected from Lake Baikal, Russia in 2005. Among the 10 PFC compounds measured, perfluorononanoic acid (PFNA, 3.3-72 ng/g wet wt) concentrations were the highest in liver, followed by perfluorooctanesulfonate (PFOS, 2.6-38 ng/g). The accumulation profile of long-chain (C7-C12) PFCAs in particular, the predominance of PFNA, indicated that 8:2 fluorotelomer alcohol or commercially manufactured PFNA is a major local source of PFCs in Lake Baikal. No gender-related differences in the concentrations of individual PFCs or total PFCs were found. Tissues from pups and juveniles contained relatively higher concentrations of PFCs than tissues from subadults and adults, suggesting that maternal transfer of PFCs is of critical importance. Comparison of concentrations of PFCs in livers and sera collected from the same individuals of Baikal seals revealed that residue levels of PFOS, PFNA, perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were significantly higher in liver than in serum. The concentration ratios of PFNA and PFDA between liver and serum were calculated to be 14 and 15, respectively, whereas the ratio of PFOS was 2.4. This suggests preferential retention of both PFNA and PFDA in liver. Concentrations of PFOS, PFNA, and PFDA in liver were significantly correlated with those in serum, whereas concentrations of PFUnDA were not correlated in between the two tissues, suggesting differences in pharmacokinetics among these PFCs. Temporal comparisons of hepatic PFC concentrations in seals collected between 1992 and 2005 showed that the concentrations of PFOS (p = 0.0006), PFNA (p = 0.061) and PFDA (p = 0.017) were higher in animals collected in recentyears, indicating ongoing sources of PFC contamination in Lake Baikal.  相似文献   

5.
Recent studies have reported the ubiquitous distribution of perfluorinated compounds (PFCs), especially perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), in wildlife and human whole blood or serum. In 2003 a solid phase extraction method was developed, which allowed the measurement of PFCs in human breast milk. In the present study, PFCs in samples of human breast milk from 19 individuals from Zhoushan, China, were analyzed by modifying a previously established method, based on weak-anion exchange extraction. PFOS and PFOA were the two dominant chemicals detected in all the milk samples. Concentrations of PFOS and PFOA ranged from 45 to 360 ng/L and 47 to 210 ng/L, respectively. The maximum concentrations of other PFCs were 100 ng/L for perfluorohexanesulfonate (PFHxS), 62 ng/L for perfluorononanoate (PFNA), 15 ng/L for perfluorodecanoate (PFDA) and 56 ng/L for perfluoroundecanoate (PFUnDA). Statistically significant correlations between various PFCs suggested a common exposure source to humans. No statistically significant correlation was found between concentrations of either PFOS or PFOA and maternal age, weight, or infant weight. Rate of consumption of fish was found to be positively correlated with PFNA, PFDA, and PFUnDA concentrations. Daily intake of PFOS for the child via breast milk with greater PFOS concentrations exceeded the predicted conservative reference dose in 1 of 19 samples, indicating that there may be a small potential risk of PFOS for the infants in Zhoushan via the consumption of breast milk.  相似文献   

6.
Perfluorooctanesulfonylfluoride (POSF)-based compounds have been manufactured and used in a variety of industrial applications. These compounds degrade to perfluorooctanesulfonate (PFOS) which is regarded as a persistent end-stage metabolite and is found to accumulate in tissues of humans and wildlife. PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) have been found in human sera from the United States. In this study, concentrations of PFHxS, perfluorobutanesulfonate (PFBS), PFOS, perfluorohexanoic acid (PFHxA), PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and PFOSA were measured in 85 samples of whole human blood collected from nine cities (eight provinces) in China, including Shenyang (Liaoning), Beijing (Hebei), Zhengzhou (Henan), Jintan (Jiangsu), Wuhan (Hubei), Zhoushan (Zhejiang), Guiyang (Guizhou), Xiamen (Fujian), and Fuzhou (Fujian). Among the 10 perfluorinated compounds (PFCs) measured, PFOS was the predominant compound. The mean concentration of PFOS was greatest in samples collected from Shenyang (79.2 ng/mL) and least in samples from Jintan (3.72 ng/mL). PFHxS was the next most abundant perfluorochemical in the samples. No age-related differences in the concentrations of PFOA, PFOS, PFOSA, and PFHxS were observed. Gender-related differences were found,with males higher for PFOS and PFHxS, and females higher in PFUnDA. Concentrations of PFHxS were positively correlated with those of PFOS, while concentrations of PFNA, PFDA, and PFUnDA were positively correlated with those of PFOA. There were differences in the concentration profiles (percentage composition) of various PFCs in the samples among the nine cities.  相似文献   

7.
8.
Occurrence and sources of perfluorinated surfactants in rivers in Japan   总被引:4,自引:0,他引:4  
We analyzed perfluorinated surfactants (PFSs) in 20 river samples and 5 wastewater secondary effluent samples in Japan to reveal their occurrence and sources. Nine PFS species were determined: perfluorooctanesulfonate (PFOS), perfluorooctane sulfonamide (FOSA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), perfluorododecanoate (PFDDA), and perfluorotridecanoate (PFTDA). PFSs were detected in all rivers, revealing nationwide contamination of rivers. In particular, 11 out of 20 river samples exceeded New Jersey guidance for PFOA in drinking water (40 ng/L). PFOS, PFHpA, PFOA, and PFNA were major species in Japan. Concentrations of PFOS, PFHpA, and PFNA in rivers were strongly correlated with population density, suggesting that the chemicals were derived from urban activities. PFOA showed a significant but weak correlation. We used crotamiton, a marker of sewage effluent, for further source analysis. Concentrations of PFOS, PFHpA, and PFNAwere strongly correlated with those of crotamiton, and plots of secondary effluents fell near the regression lines of rivers, indicating that the PFOS, PFHpA, and PFNA in rivers were derived from sewage effluent. On the other hand, PFOA was found at remarkably high levels (54-192 ng/L) in seven river samples containing low levels of crotamiton, suggesting that it was derived from nonsewage point sources, as well as sewage effluent. The total fluxes of sewage-derived PFOS, PFHpA, PFOA, and PFNA from Japan were estimated to be 3.6, 2.6, 5.6, and 2.6 t/year, respectively. This is the first report to identify PFOA in several rivers, derived from nonsewage point sources, by using a marker of sewage effluent.  相似文献   

9.
Wastewater treatment plants have recently been identified as a significant pathway for the introduction of perfluoroalkyl surfactants (PASs) to natural waters. In this study, we measured concentrations and fate of several PASs in six wastewater treatment plants (WWTPs) in New York State. We also monitored and measured matrix effects (ionization suppression and enhancement) by postcolumn infusion and standard additions. Concentrations of perfluorooctanoate (PFOA) in effluents of the six WWTPs ranged from 58 to 1050 ng/L. Perfluorooctanesulfonate (PFOS) was also ubiquitous in effluents of these WWTPs, albeit at much lower concentrations (3-68 ng/L). Two of these WWTPs employed identical treatment processes, with similar hydraulic retentions, but differed only in that Plant B treated domestic and commercial waste, whereas Plant A had an additional industrial influence. We found that this industrial influence resulted in significantly greater mass flows of all of the PASs analyzed. Primary treatment was found to have no effect on the mass flows of PASs. Secondary treatment by activated sludge in Plant A significantly increased (p < 0.05) the mass flows of PFOS, PFOA, perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA). However, in Plant B, only the mass flow of PFOA was significantly increased. The observed increase in mass flow of several PASs may have resulted from biodegradation of precursor compounds such as fluorotelomer alcohols, which is supported by significant correlations in the mass flow of PFOA/PFNA and PFDA/PFUnDA. Furthermore, the masses of PFDA and PFUnDA were significantly correlated only after the secondary treatment. In Plant A, concentrations of odd-number PFCAs were greater than those of even-number PFCAs, and concentration decreased with increasing chain length (from C8 to C12). A different pattern was observed in sludge samples, in which the dominance of PFOA decreased, and PFDA and PFUnDA increased, suggesting preferential partitioning of longer-chain PFCAs to sludge.  相似文献   

10.
Concentrations of perfluoroalkyl acids (PFAs) were measured in egg yolks of three species of birds, the little egret (Egretta garzetta), little ringed plover (Charadrius dubius), and parrot bill (Paradoxornis webbiana), collected in and around Lake Shihwa, Korea, which receives wastewaters from an adjacent industrial complex. Mean concentrations of perfluorooctanesulfonate (PFOS) ranged from 185 to 314 ng/g ww and were similar to those reported for bird eggs from other urban areas. Long-chain perfluorocarboxylic acids (PFCAs) were also found in egg yolks often at great concentrations. Mean concentrations of perfluoroundecanoic acid (PFUnA) ranged from 95 to 201 ng/g ww. Perfluorooctanoic acid was detected in 32 of 44 egg samples, but concentrations were 100-fold less than those of PFOS. Relative concentrations of PFAs in all three species were similar with the predominance of PFOS (45-50%). There was a statistically significant correlation between PFUnA and perfluorodecanoic acid in egg yolks (p < 0.05), suggesting a common source of PFCAs. Using measured egg concentrations and diet concentrations, the ecological risk of the PFOS and PFA mixture to birds in Lake Shihwa was evaluated using two different approaches. Estimated hazard quotients were similar between the two approaches. The concentration of PFOS associated with 90th centile in bird eggs was 100-fold less than the lowest observable adverse effect level determined for birds, and those concentrations were 4-fold less than the suggested toxicity reference values. On the basis of limited toxicological data, current concentrations of PFOS are less than what would be expected to have an adverse effect on birds in the Lake Shihwa region.  相似文献   

11.
Perfluorinated acids (PFAs) are today widely distributed in the environment, even in remote arctic areas. Recently, perfluorooctane sulfonate (PFOS) has been identified in marine mammals all over the world, but information on the compound-specific tissue distribution remains scarce. Furthermore, although longer perfluorinated carboxylic acids (PFCAs) are used in industry and were shown to cause severe toxic effects, still little is known on potential sources or their widespread distribution. In this study, we report for the first time on levels of longer chain PFCAs, together with some short chain PFAs, perfluorobutane sulfonate (PFBS) and perfluorobutanoate (PFBA), in liver, kidney, blubber, muscle, and spleen tissues of harbor seals (Phoca vitulina) from the Dutch Wadden Sea. PFOS was the predominant compound in all seal samples measured (ranging from 89 to 2724 ng/g wet weight); however, large variations between tissues were monitored. Although these are preliminary results, it is, to our knowledge, the first time that PFBS could be found at detectable concentrations (2.3 +/- 0.7 ng/g w wt) in environmental samples. PFBS was only detected in spleen tissue. PFCA levels were much lower than PFOS concentrations. The dominant PFCA in all tissues was PFNA (perfluorononanoic acid), and concentrations generally decreased in tissues for all other PFCA homologues with increasing chain length. No clear relationship between PFOS levels in liver and kidney was observed. Furthermore, hepatic PFDA (perfluorodecanoic acid) levels increased with increasing body length, but in kidney tissue, PFDA levels showed an inverse relationship with increasing body length. These data suggest large differences in tissue distribution and accumulation patterns of perfluorinated compounds in marine organisms.  相似文献   

12.
Perfluorooctanesulfonyl fluoride based compounds have been used in a wide variety of consumer products, such as carpets, upholstery, and textiles. These compounds degrade to perfluorooctanesulfonate (PFOS), a persistent metabolite that accumulates in tissues of humans and wildlife. Previous studies have reported the occurrence of PFOS, perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), and perfluorooctanesulfonamide (PFOSA) in human sera collected from the United States. In this study, concentrations of PFOS, PFHxS, PFOA, and PFOSA were measured in 473 human blood/serum/plasma samples collected from the United States, Colombia, Brazil, Belgium, Italy, Poland, India, Malaysia, and Korea. Among the four perfluorochemicals measured, PFOS was the predominant compound found in blood. Concentrations of PFOS were the highest in the samples collected from the United States and Poland (>30 ng/mL); moderate in Korea, Belgium, Malaysia, Brazil, Italy, and Colombia (3 to 29 ng/mL); and lowest in India (<3 ng/mL). PFOA was the next most abundant perfluorochemical in blood samples, although the frequency of occurrence of this compound was relatively low. No age- or gender-related differences in the concentrations of PFOS and PFOA were found in serum samples. The degree of association between the concentrations of four perfluorochemicals varied, depending on the origin of the samples. These results suggested the existence of sources with varying levels and compositions of perfluorochemicals, and differences in exposure patterns to these chemicals, in various countries. In addition to the four target fluorochemicals measured, qualitative analysis of selected blood samples showed the presence of other perfluorochemicals such as perfluorodecanesulfonate (PFDS), perfluoroheptanoic acid (PFHpA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA), and perfluoroundecanoic acid (PFUnDA) in serum samples, at concentrations approximately 5- to 10-fold lower than the concentration of PFOS. Further studies should focus on identifying sources and pathways of human exposure to perfluorochemicals.  相似文献   

13.
Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (相似文献   

14.
Perfluorinated compounds (PFCs) are known to biomagnify in temperate and Arctic food webs, but little is known about their behavior in subtropical systems. The environmental distribution and biomagnification of PFCs, extractable organic fluorine (EOF), and total fluorine were investigated in a subtropical food web. Surface water, sediment, phytoplankton, zooplankton, gastropods, worms, shrimps, fishes, and waterbirds collected in the Mai Po Marshes Nature Reserve in Hong Kong were analyzed. Trophic magnification was observed for perfluorooctanesulfonate (PFOS), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), and perfluorododecanoate (PFDoDA) in this food web. Risk assessment results for PFOS, PFDA, and perfluorooctanoate (PFOA) suggest that current PFC concentrations in waterbird livers are unlikely to pose adverse biological effects to waterbirds. All hazard ratio (HR) values reported for PFOS and PFOA are less than one, which suggests that the detected levels will not cause any immediate health effects to the Hong Kong population through the consumption of shrimps and fishes. However, only 10-12% of the EOF in the shrimp samples was comprised of known PFCs, indicating the need for further investigation to identify unknown fluorinated compounds in wildlife.  相似文献   

15.
采用超声法提取纺织品中的全氟化合物。以C18为分析柱,甲醇-5 mmol/L乙酸铵为梯度洗脱淋洗液, 13 min内即可分离全氟己酸(PFHxA),全氟辛酸(PFOA),全氟壬酸(PFNA),全氟癸酸(PFDA),全氟十一酸(PFuDA),全氟十二酸(PFDoA), 全氟丁烷磺酸(PFBS),全氟己烷磺酸(PFHxS),全氟辛烷磺酸(PFOS),全氟癸烷磺酸(PFDS) 10种分析物。以313.1/268.9,412.9/368.9,462.9/418.9,512.7/468.9,562.7/518.9,612.8/568.9,298.8/99,399.2/99,498.8/99,599/99分别对PFHxA,PFOA,PFNA,PFDA,PFuDA,PFDoA,PFBS,PFHxS,PFOS,PFDS进行监控和定量分析。利用同位素内标法进行定量,线性范围和添加回收率分别为0.5~10 µg/m2、84.6%~111.8%,检出限为0.5 µg/m2,低于欧盟指定针对纺织品1 µg/m2 的限定。结果表明,本方法准确、快速,并成功用于20种纺织品实样的检测。  相似文献   

16.
To learn the extent of human exposure to polyfluoroalkyl compounds (PFCs) in a remote fishing population, we measured, in Faroese children and pregnant women, the serum concentrations of nine PFCs, including perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and perfluorononanoate (PFNA), by using online solid-phase extraction coupled to isotope dilution high-performance liquid chromatography-tandem mass spectrometry. The serum samples analyzed had been collected between 1993 and 2005 from 103 children 7 years of age, 79 of these children at 14 years of age, and from 12 pregnant women and their children 5 years later. PFOS was detected in all samples analyzed, and both PFOA and PFNA were detected in all but one of the samples. The concentrations found are comparable tothose reported elsewhere. Correlations between paired concentrations were poor. However, PFOS and PFNA concentrations correlated well with the frequency of pilotwhale dinners and with concentrations of mercury and polychlorinated biphenyls. One whale meal every two weeks increased the PFOS concentration in 14-year-olds by about 25% and PFNA by 50%. The high frequency of detection of most PFCs suggests widespread exposure in the Faroe Islands already by the early 1990s, with whale meat being an important source.  相似文献   

17.
Since 2002, practices in manufacturing polyfluoroalkyl chemicals (PFCs) in the United States have changed. Previous results from the National Health and Nutrition Examination Survey (NHANES) documented a significant decrease in serum concentrations of some PFCs during 1999-2004. To further assess concentration trends of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA), we analyzed 7876 serum samples collected from a representative sample of the general U.S. population ≥12 years of age during NHANES 1999-2008. We detected PFOS, PFOA, PFNA, and PFHxS in more than 95% of participants. Concentrations differed by sex regardless of age and we observed some differences by race/ethnicity. Since 1999-2000, PFOS concentrations showed a significant downward trend, because of discontinuing industrial production of PFOS, but PFNA concentrations showed a significant upward trend. PFOA concentrations during 1999-2000 were significantly higher than during any other time period examined, but PFOA concentrations have remained essentially unchanged during 2003-2008. PFHxS concentrations showed a downward trend from 1999 to 2006, but concentrations increased during 2007-2008. Additional research is needed to identify the environmental sources contributing to human exposure to PFCs. Nonetheless, these NHANES data suggest that sociodemographic factors may influence exposure and also provide unique information on temporal trends of exposure.  相似文献   

18.
We investigated temporal trends of blood serum levels of 13 perfluorinated alkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in primiparous women (N = 413) from Uppsala County, Sweden, sampled 3 weeks after delivery 1996-2010. Levels of the short-chain perfluorobutane sulfonate (PFBS) and perfluorohexane sulfonate (PFHxS) increased 11%/y and 8.3%/y, respectively, and levels of the long-chain perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) increased 4.3%/y and 3.8%/y, respectively. Concomitantly, levels of FOSA (22%/y), perfluorooctane sulfonate (PFOS, 8.4%/y), perfluorodecane sulfonate (PFDS, 10%/y), and perfluorooctanoate (PFOA, 3.1%/y) decreased. Thus, one or several sources of exposure to the latter compounds have been reduced or eliminated, whereas exposure to the former compounds has recently increased. We explored if maternal levels of PFOS, PFOA, and PFNA during the early nursing period are representative for the fetal development period, using serial maternal serum samples, including cord blood (N = 19). PFAA levels in maternal serum sampled during pregnancy and the nursing period as well as in cord blood were strongly correlated. Strongest correlations between cord blood levels and maternal levels were observed for maternal serum sampled shortly before or after the delivery (r = 0.70-0.89 for PFOS and PFOA). A similar pattern was observed for PFNA, although the correlations were less strong due to levels close to the method detection limit in cord blood.  相似文献   

19.
Perfluoroalkyl chemicals (PFCs) are stable man-made compounds with many industrial and commercial uses. Concern has been raised that they may exert deleterious effects, especially on lipid regulation. We aimed to assess exposure to perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and seven other PFCs in occupational workers from a fluorochemical plant and nearby community residents, and to investigate the association between PFOA and serum biomarkers. Serum biomarkers included not only biochemical parameters, such as lipids and enzymes, but also circulating microRNAs (miRNAs). Samples were analyzed by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Circulating miRNA levels were detected by quantitative polymerase chain reaction (PCR). Analyses were conducted by correlation and linear regression. We detected PFOS, PFOA, perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in all samples. The median levels of serum PFOA and PFOS were 284.34 ng/mL and 34.16 ng/mL in residents and 1635.96 ng/mL and 33.46 ng/mL in occupational participants, respectively. To our knowledge, we found for the first time that PFOA was negatively associated with high-density lipoprotein cholesterol (HDL-C) in workers using linear regression after adjusting for potential confounders. Circulating miR-26b and miR-199a-3p were elevated with serum concentration of PFOA. Although the limitations of small sample size and the cross-sectional nature of the current study constrained causal inferences, the observed associations between PFOA and these serum biomarkers warrant further study.  相似文献   

20.
We report here on the spatial distribution of C(4), C(6), and C(8) perfluoroalkyl sulfonates, C(6)-C(14) perfluoroalkyl carboxylates, and perfluorooctanesulfonamide in the Atlantic and Arctic Oceans, including previously unstudied coastal waters of North and South America, and the Canadian Arctic Archipelago. Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were typically the dominant perfluoroalkyl acids (PFAAs) in Atlantic water. In the midnorthwest Atlantic/Gulf Stream, sum PFAA concentrations (∑PFAAs) were low (77-190 pg/L) but increased rapidly upon crossing into U.S. coastal water (up to 5800 pg/L near Rhode Island). ∑PFAAs in the northeast Atlantic were highest north of the Canary Islands (280-980 pg/L) and decreased with latitude. In the South Atlantic, concentrations increased near Rio de la Plata (Argentina/Uruguay; 350-540 pg/L ∑PFAAs), possibly attributable to insecticides containing N-ethyl perfluorooctanesulfonamide, or proximity to Montevideo and Buenos Aires. In all other southern hemisphere locations, ∑PFAAs were <210 pg/L. PFOA/PFOS ratios were typically ≥1 in the northern hemisphere, ~1 near the equator, and ≤1 in the southern hemisphere. In the Canadian Arctic, ∑PFAAs ranged from 40 to 250 pg/L, with perfluoroheptanoate, PFOA, and PFOS among the PFAAs detected at the highest concentrations. PFOA/PFOS ratios (typically ?1) decreased from Baffin Bay to the Amundsen Gulf, possibly attributable to increased atmospheric inputs. These data help validate global emissions models and contribute to understanding of long-range transport pathways and sources of PFAAs to remote regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号