首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
含氟聚醚醚酮增韧环氧树脂相形貌与性能研究   总被引:3,自引:0,他引:3  
采用SEM观察了热塑性含氟结构聚醚醚酮(6FPEEK)共混增韧环氧树脂的浇铸体脆断断口相形貌,测试了浇铸体的力学性能及动态机械性能,通过统计和数学分析建立了冲击韧性(αk)、热塑颗粒粒径(d)和粒间距(D)间的半定量关系。结果表明,该体系可得到连续相为环氧树脂而分散相为热塑颗粒的相结构,热塑相颗粒尺寸较为统一,且随热塑性树脂含量的增加而增大;6FPEEK含量增加对拉伸强度的影响不大,环氧树脂和热塑性塑料的结合界面差导致了冲击韧性在6FPEEK质量分数达到9.09%时出现峰值而后下降;该增韧体系的增韧机理可能为刚性粒子增韧。  相似文献   

2.
Polymer microparticles are useful for numerous applications such as stationary phases in chromatography, adsorbents and catalyst supports, as well as for drug delivery systems. In recent decades the application of supercritical fluids for microparticle precipitation has been developed to a point where it is an ideal alternative to conventional processes. In this work poly(l-lactic acid) (PLLA), a biodegradable and biocompatible thermoplastic aliphatic polyester, has been processed using supercritical fluids, particularly by rapid expansion of supercritical solutions (RESS) and supercritical antisolvent (SAS) processes over a wide miscibility range. Particle morphology was greatly improved from irregular blocks to spherical microparticles on applying the SAS process. The effects of changes in polymer concentration, liquid flow rate, nozzle diameter, solvent, pressure and temperature have also been evaluated on the particle size of PLLA in the SAS precipitation. A higher concentration of the initial solution led to a decrease in particle size. Dichloromethane was the best of the chlorinated solvents investigated. The nozzle diameter had a negligible effect on particle size and the highest liquid flow rate gave the largest particle size. A larger particle size was also obtained on increasing the operating temperature. In contrast, the particle size decreased on increasing the operating pressure.  相似文献   

3.
聚氯乙烯/丁腈胶粉共混型热塑性弹性体   总被引:8,自引:0,他引:8  
将聚氯乙烯与废丁腈胶粉经高温机械共混,制备了动态交联的共混型热塑性弹性体。讨论了共混比,硫化体系及其用量,废胶粉品种(丁腈胶粉,轮胎胶粉)等因素对热塑性弹性体性能的影响,同时将聚氯乙烯/丁腈胶粉与聚氯乙烯/轮胎胶粉制备的共混型热塑性弹性体的性能进行了比较。结果表明,以聚氯乙烯100份(质量份,下同),邻苯二甲酸二辛酯50份,丁腈胶粉80份,丁腈橡胶20份,过氧化二异丙苯0.5份,氧化锌5份及适量其他助剂可制得综合性能较好的共混型热塑性弹性体。扫描电镜结果显示该共混型热塑性弹性体具有较好的相容性。  相似文献   

4.
Compatibility of poly(styrene) (PS)/natural rubber (NR) blend is improved by the addition of diblock copolymer of poly(styrene) and cis‐poly(isoprene) (PS‐b‐PI). The compatibilizing effect has been investigated as a function of block copolymer molecular weight, composition and concentration. The effect of homopolymer molecular weight, processing conditions and mode of addition on the morphology of the dispersed phase have also been investigated by means of optical microscopy and scanning electron microscopy. A sharp decrease in phase dimensions is observed with the addition of a few percent of block copolymers. The effect levels off at higher concentrations. The leveling off could be an indication of interfacial saturation. For concentrations below the critical value, the particle size reduction is linear with copolymer volume fraction and agrees well with the prediction of Noolandi and Hong. The addition of the block copolymer improves the mechanical properties of the blend. An attempt is made to correlate the mechanical properties with the morphology of the blends. © 2001 Society of Chemical Industry  相似文献   

5.
Effects of polymerization temperature, conversions, and nonionic surfactant on the particle properties of suspension poly(vinyl chloride) (PVC) resins were investigated. It was shown that polymerization temperature has no significant influences on the mean particle size of PVC resin, and that the cold plasticiser absorption (CPA) of resin decreases linearly with the increase of polymerization temperature. Agglomeration of VCM droplets finishes before 20% conversion, and the mean particle size keeps almost constant at later stages of the polymerization process, but the CPA continues decreasing with the increase of conversion. Scanning Electron Microscopy (SEM) micrographs show that the degree of agglomeration of primary particles increases with polymerization temperature and conversion. Addition of nonionic surfactant to the VCM suspension system, as a secondary suspending agent, has a great influence on the particle properties of PVC resin. The particle size and CPA increase as the concentration of nonionic surfactant increases. The nonionic surfactant with a greater HLB value is more effective in raising the mean particle size, but is less effective in raising the CPA. It is considered that the added nonionic surfactant would be absorbed faster on the VCM/water interface than the poly(vinyl alcohol) (PVA), which was used as the primary suspending agent. Because the colloid protection ability of the nonionic surfactant is less than that of PVA, droplets become less resistant to coalescence, and the mean particle size of the final PVC resin increases consequently. The increase of porosity is caused by the combined effects of increased coalescence of VCM droplets and the nonionic surfactant's steric effect inside the droplets. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1544–1552, 2002  相似文献   

6.
Novel heterogeneous cation‐exchange membranes using poly (ether sulfone)(PES) as binder and sulfonated poly(phenylene sulfide) (SPPS) powder as polyelectrolyte were prepared by the solution casting‐immersion method. Compared with a conventional route for heterogeneous membrane, the steps of milling resin into fine powders and the pressing at high temperature are avoided, and thus permits a simple technique for the preparation of such membrane. The effect of the particle size and loading of SPPS resin on the properties of the membranes such as ion‐exchange capacity, water content, electrical resistance, transport number, diffusion coefficient of electrolytes, etc., have been studied. It is shown that the membrane fundamental properties are largely dependent on both the resin loading and the particle size of SPPS resin. By adjusting these two important parameters, one can obtain heterogeneous membrane with both good conductivity, selectivity, and proper water content for different industrial purposes such as electrodialysis, diffusional dialysis, etc. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 167–174, 2004  相似文献   

7.
Novel poly(ether ether ketone)-block-polyimide copolymers (PEEK-b-PI) with different block length were prepared by the polycondensation of amino-terminated poly(ether ether ketone) oligomer and anhydride-terminated polyamic acid oligomer. As the compatibility agent, PEEK-b-PI was added to the poly(ether ether ketone)/thermoplastic polyimide (PEEK/TPI) blend, and blends of PEEK/TPI/PEEK-b-PI were prepared by melt extrusion. Morphology observation showed the domain size of the dispersed phase was significantly reduced with the addition of PEEK-b-PI having optimized block length, which suggested reduced interfacial tension and enhanced interfacial adhesion. The compatibilizing effect was further proven by the change of the glass transition temperature of PEEK and TPI, which shifted closer to each other. As a result, the mechanical properties of PEEK/TPI blends were significantly improved with the addition of the PEEK-b-PI. In particular, 5 wt% content of PEEK-b-PI can increase the elongation at break of the blend by about 200%.  相似文献   

8.
A compatibilization method that consists of the addition of minor amounts of a commercial thermoplastic, which interacts or reacts with both the matrix and the dispersed liquid crystalline polymer (LCP) of thermoplastic/LCP blends, has been tested in the case of poly(ethylene terephthalate)/Vectra A950 (PET/VA) blends by means of the addition of bisphenol A polycarbonate (PC). The smaller particle size, rougher surface of the fibers and higher ductility of the PET/VA blends of a 30% of the PET substituted by PC clearly showed the suitability of PC as a compatibilizer. The moduli of elasticity of the compatibilized and uncompatibilized blends were similar. This was due to the less‐developed fibrillation of the compatibilized blends, a consequences of their smaller particle size and decreased matrix viscosity. These changes counteracted the effects of improved interfacial adhesion. The improved adhesion led to higher ductility and tensile and impact strengths in most of the compatibilized blends.  相似文献   

9.
Poly(ethylene sulfide) which is a strong, stiff, solvent-resistant thermoplastic resin, upon preparation and molding, undergoes rapid degradation upon aging in air with significant loss in impact strength and other physical properties. This is attributed to surface crazing and shrinking caused by molecular breakdown and crystallization. Infrared spectral studies show the rapid formation of sulfoxide, sulfone, and carbonyl moities in the polymer and mass spectral analysis shows the principal gaseous degradation products to be acetaldehyde, carbon dioxide, sulfur dioxide, and water. The addition of antioxidants, blending with other resins, and polymer modification give only minor improvement in oxidation resistance. This poor oxidation resistance has prohibited the development of poly(ethylene sulfide) as a commercial thermoplastic.  相似文献   

10.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Recent morphological studies of plasticized and unplasticified poly(vinyl chloride) (PVC) are reviewed. Suspension polymerized PVC contains particles in a number of different size ranges 100–200Å, 1000–5000Å, 1μ and larger. The larger size particles are broken down during plasticization but both the 100Å and the 1000Å suspension particles retain their identity. The visibility, and presumably, coalescence of these particles is a function of the processing conditions. In particular, the size of the 100Å particle increases with plasticizer content and is most distinct as characterized both by small angle x-ray scattering and electron microscopy for milling temperatures in the 160–170°C. range. Consideration is given to the effect of these particles, their structure, and interrelationship on the rheological properties of the resins.  相似文献   

12.
The effect of adsorbed polymer on the stability of alumina suspension was investigated. Poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA) and similar kinds of polymer salts were used as a dispersant. The amount of polymer adsorbed on alumina surface and the suspension stability was measured. The pH, molecular weight, and concentration were considered as experimental parameters. PEO shows low affinity on the alumina surface while PAA has high affinity. In the case of PAA adsorption, the surface charge change by polymer adsorption influences suspension stability strongly, but not in the case of PEO adsorption. In simultaneous adsorption of PEO and PAA, the PAA concentration was fixed and PEO concentration was varied. The stability of suspension increased with increasing PEO concentration, and this is partly due to the steric stabilization by adsorption of PAA-PEO complex or adsorption of PEO through pre-adsorbed PAA and the depletion effect of non-adsorbed polymer. Suspension adsorbing sodium salts of PAA and poly(methacrylic acid) (PMA) each showed similar stability. But, when the PEO and these kinds of salts were added together to the suspension, the one with PAA sodium salt could keep a higher stability even with lower molecular weights of PEO compared with suspension with PMA sodium salt.  相似文献   

13.
Wenshou Wang  Joshua U. Otaigbe 《Polymer》2008,49(20):4393-4398
Novel biodegradable and biocompatible poly(ester-urethane)s were synthesized by in situ homogeneous solution polymerization of poly(?-caprolactone) diol, dimethylolpropionic acid (DMPA), and methylene diphenyl diisocyanate in acetone followed by solvent exchange with water. The effects of the DMPA content and hard segment content on the properties of the polyurethanes were measured by DSC, TGA, and hydrolytic degradation measurements. The results showed that DMPA had a dramatic effect on the particle size; the particle size decreased rapidly with increasing DMPA content. The hydrolytic degradation test showed that the degradation rate was little affected by the DMPA content in the range investigated, but was observed to be influenced by the hard segment content. Cell toxicity analysis showed that the biodegradable poly(ester-urethane)s synthesized in this study did not exhibit any detectable toxicity to human umbilical vein endothelial cells and mouse embryonic stem cells. Both types of cells can effectively adhere to and spread on the surface of pure poly(?-caprolactone) or poly(ester-urethane)s. The present study demonstrates the feasibility of a facile synthesis of biodegradable polyurethanes and of their aqueous dispersions with prescribed properties for biomedical applications.  相似文献   

14.
The capillary extrusion flow properties of novel engineering thermoplastic phenolphthalein poly(ether-ether-sulphone) (PES-C) have been investigated using capillary rheometer. The dependence of viscosity on the wall shear rate and temperatures were obtained. The flow activation energy was found to decrease with shear rate but to be constant with shear stress. The entrance effect was calculated and from which the extensional behavior was estimated using Cogswell's method. From the extrudate swell ratio the principal normal stress was evaluated and a temperature-independent correlation was observed when they were plotted against shear stress. The melt fracture phenomena were checked and discussed also. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:951–958, 1997  相似文献   

15.
A series of well defined ABA, 3-arm star and bottle brush type copolymers, containing soft poly(n-butyl acrylate) (PBA) blocks and hard blocks of polystyrene (PS) were synthesized by atom transfer radical polymerization (ATRP). Small angle X-ray scattering was used to study the phase separation in these systems and dynamic mechanical analysis and tensile tests were performed to characterize their thermo-mechanical properties. The specific molecular architecture has a major effect on the copolymers self-organization and material properties. The linear ABA type copolymers showed micro phase separation and thermoplastic elastomer (TPE) behavior only at very high PS content. The change of molecular architecture from linear to 3-arm star type resulted in an improved phase separation at lower PS content and better thermoplastic elastomer properties. In contrast the specific brush type molecular architecture seems to prevent the micro phase separation of the PBA and PS components, resulting in amorphous bulk material with single glass transition temperature.  相似文献   

16.
In this work, a novel polymer blend containing poly(lactic acid) (PLA) as a biocompatible and biodegradable thermoplastic and acrylic rubber (ACM) is prepared and the miscibility and phase structure of the blend and its nanocomposite (PLA/ACM/nanosilica) are investigated through theoretical and experimental methods. To predict the phase diagram of the blend, a compressible regular solution model was employed, in which an upper critical solution temperature was observed. The model predicted that PLA/ACM blends are immiscible over the whole composition range at temperatures below 260 °C. Performing scanning force microscopy on the blend showed phase separated structures for the blends containing different amounts of the PLA and ACM. This was in accordance with the results of dynamic mechanical analysis, which revealed two distinct glass transition temperatures for the studied blends. The effect of nanometer sized silica particle on morphology and rheological properties of these blends was also investigated. Scanning force microscopy results showed much reduction of droplet size in the blends containing 2 wt % nanosilica. This was attributed to the suppression effect of nanosilica on the droplets coalescences. Rheological measurements confirmed the interaction of both components with the silica nanofiller. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45499.  相似文献   

17.
Core–shell nanomaterials of poly(butyl acrylate)‐poly(methyl methacrylate) were synthesized using a differential microemulsion polymerization method for being used as polyacrylate‐based optical materials, which meet the requirement of anti‐crease‐whitening and proper mechanical strength. The effects of reaction temperature and surfactant amount on the particle sizes, as well as the effect of reaction temperature on the conversion and solid content were investigated to reveal the dependence of the application properties on the reaction conditions. The spherical morphology of core–shell nanoparticles was also studied via transmission electron microscopy. The resulting polymers with a core–shell monomer ratio of butyl acrylate/methyl methacrylate at 32/10 (vol/vol) demonstrated the optimal balanced properties in the anti‐crease‐whitening and mechanical property, confirmed by the visible light transmittance measurement and the dynamic analysis of the viscoelastic properties of the synthesized core–shell nanomaterials. The smaller the particle size, the better the transparency of the resulting polymer films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39991.  相似文献   

18.
Morphology and mechanical properties of blends of plasticized poly(vinyl chloride) (PVC) and thermoplastic copolyester elastomer (Hytrel 40D) have been studied with special reference to the effect of blend ratios. Morphology of the blends indicates that the Hytrel phase is dispersed as domains in the continuous PVC phase up to 75 percent of its concentration. Dynamic mechanical analysis of the blends shows marginal level of compatibility between the two phases. The mechanical properties depend on the proportion of thermoplastic rubber in the blend. Attempts have been made to correlate the blend morphology with properties. Failure surfaces were examined by scanning electron microscope and it was found that the fractographs depend on the type of failure (tensile or tear) and on the blend composition.  相似文献   

19.
The various properties of the blends of polyacetal (POM) with up to 20 wt.-% chemically surface-treated poly(tetrafluoroethylene) (CPTFE) were investigated and compared with those of POM/PTFE blends. The PTFE is added to POM to improve the wear properties, however, the mechanical properties of POM/PTFE blends decrease with increasing PTFE content, but tensile strength and Young's modulus of POM/CPTFE blends are more than 2 times higher than that of the POM/PTFE blends. SEM shows that the size of inherent agglomerative PTFE is in the range of 30 to 100 μm. The particle size of major CPTFE dispersed in POM is smaller than 1 μm.  相似文献   

20.
Suspensions of copolyaniline containing ethoxy group, namely poly(aniline-co-o-ethoxyaniline), in silicone oil have been investigated as one of many potential candidates for dry-base electrorheological (ER) fluid systems. The copolyanilines were synthesized by a chemical oxidation of aniline and o-ethoxyaniline with various molar ratios in an acidic media, and the characteristics of these polymers were examined by using several techniques. By using FT-IR, SEM, and a particle size analyzer, we studied chemical structure, particle size, and the particle size distribution of the copolymer, respectively. A Physica rheometer equipped with a high voltage generator was also adopted to measure the rheological properties of ER fluids using the copolyaniline. Controlled shear stress mode was used for the shear rate sweep measurement, and the copolyaniline synthesized in this study was found to give a typical ER behavior, that is, shear stresses increase with increasing electric fields and volume fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号