首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of 25-hydroxyvitamin D-3 24-hydroxylase by 1,25-dihydroxyvitamin D-3 and synthetic human parathyroid hormone fragment 1–34 (PTH1–34) was investigated using a cloned monkey kidney cell line, JTC-12. Treatment of the cells with 1,25-dihydroxyvitamin D-3 markedly enhanced the conversion of [3H]-25-hydroxyvitamin D-3 into a more polar metabolite. The metabolite was identified as 24,25-dihydroxyvitamin D-3 by normal phase and reverse phase high-performance liquid chromatography and periodate oxidation. The 24-hydroxylae activity appeared to follow Michaelis-Menten kintics, and 1,25-dihydroxyvitamin D-3 treatment increased the Vmax of 24-hydroxylase from 33 to 95 pmol/h per 106 cells without affecting the apparent Km value of the enzyme (220 nM in control vs. 205 nM in 1,25-dihydroxyvitamin D-3 treated cells). The enzyme activity reached a maximum between 4 and 8 h of treatment with 1,25-dihydroxyvitamin D-3. The dose of 1,25-dihydroxyvitamin D-3 required to cause a half-maximal stimulation was about 3 · 10?10 M. The 1,25-dihydroxyvitamin D-3-induced increase in 24-hydroxylase was almost completely inhibited by the presence of 1 μM cycloheximide. Treatment of the cells with PTH1–34 caused a dose-dependent increase in cyclic AMP production. Half-maximal stimulation of cyclic AMP production was obtained at about 5 · 10?9 M PTH1–34. When 2.4 · 10?9 M PTH1–34 was added after 1,25-dihydroxyvitamin D-3 treatment, the 1,25-dihydroxyvitamin D-3-stimulated 24-hydroxylase was inhibited to 70.7 ± 2.9% of control. Higher concentrations of PTH1–34 caused less inhibition of the enzyme activity. When cyclic AMP was added instead of PTH1–34, the enzyme activity was also suppressed significantly. These results indicate that, in JTC-12 cells, 1,25-dihydroxyvitamin D-3 stimulates 24-hydroxylase in a dose- and time-dependent manner by increasing the Vmax of the enzyme through a mechanism dependent upon new protein synthesis, and suggest that PTH1–34 inhibits the 1,25-dihydroxyvitamin D-3-induced stimulation of 24-hydroxylase through its effect on cyclic AMP production.  相似文献   

2.
Ren Y  Liu B  Feng Y  Shu L  Cao X  Karaplis A  Goltzman D  Miao D 《PloS one》2011,6(7):e23060

Background

Although the capacity of exogenous PTH1-34 to enhance the rate of bone repair is well established in animal models, our understanding of the mechanism(s) whereby PTH induces an anabolic response during skeletal repair remains limited. Furthermore it is unknown whether endogenous PTH is required for fracture healing and how the absence of endogenous PTH would influence the fracture-healing capacity of exogenous PTH.

Methodology/Principal Findings

Closed mid-diaphyseal femur fractures were created and stabilized with an intramedullary pin in 8-week-old wild-type and Pth null (Pth −/−) mice. Mice received daily injections of vehicle or of PTH1-34 (80 µg/kg) for 1–4 weeks post-fracture, and callus tissue properties were analyzed at 1, 2 and 4 weeks post-fracture. Cartilaginous callus areas were reduced at 1 week post-fracture, but were increased at 2 weeks post-fracture in vehicle-treated and PTH-treated Pth −/− mice compared to vehicle-treated and PTH-treated wild-type mice respectively. The mineralized callus areas, bony callus areas, osteoblast number and activity, osteoclast number and surface in callus tissues were all reduced in vehicle-treated and PTH-treated Pth −/− mice compared to vehicle-treated and PTH-treated wild-type mice, but were increased in PTH-treated wild-type and Pth −/− mice compared to vehicle-treated wild-type and Pth −/− mice.

Conclusions/Significance

Absence of endogenous PTH1-84 impedes bone fracture healing. Exogenous PTH1-34 can act in the absence of endogenous PTH but callus formation, including accelerated endochondral bone formation and callus remodeling as well as mechanical strength of the bone are greater when endogenous PTH is present. Results of this study suggest a complementary role for endogenous PTH1-84 and exogenous PTH1-34 in accelerating fracture healing.  相似文献   

3.
Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling‐related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. J. Cell. Physiol. 227: 3731–3743, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Following bone fracture, the repair process starts with an inflammatory reaction at the fracture site. Fracture healing is disturbed when the initial inflammation is increased or prolonged, whereby, a balanced inflammatory response is anticipated to be crucial for fracture healing, because it may induce down-stream responses leading to tissue repair. However, the impact of the immune response on fracture healing remains poorly understood. Here, we investigated bone healing in NOD/scid-IL2Rγcnull mice, which exhibit severe defects in innate and adaptive immunity, by biomechanical testing, histomorphometry and micro-computed tomography. We demonstrated that NOD/scid-IL2Rγcnull mice exhibited normal skeletal anatomy and a mild bone phenotype with a slightly reduced bone mass in the trabecular compartment in comparison to immunocompetent Balb/c mice. Fracture healing was impaired in immunodeficient NOD/scid-IL2Rγcnull mice. Callus bone content was unaffected during the early healing stage, whereas it was significantly reduced during the later healing period. Concomitantly, the amount of cartilage was significantly increased, indicating delayed endochondral ossification, most likely due to the decreased osteoclast activity observed in cells isolated from NOD/scid-IL2Rγcnull mice. Our results suggest that—under aseptic, uncomplicated conditions—the immediate immune response after fracture is non-essential for the initiation of bone formation. However, an intact immune system in general is important for successful bone healing, because endochondral ossification is delayed in immunodeficient NOD/scid-IL2Rγcnull mice.  相似文献   

5.
6.
Sample SJ  Hao Z  Wilson AP  Muir P 《PloS one》2011,6(6):e20386

Background

Calcitonin gene related peptide (CGRP) is a neuropeptide that is abundant in the sensory neurons which innervate bone. The effects of CGRP on isolated bone cells have been widely studied, and CGRP is currently considered to be an osteoanabolic peptide that has effects on both osteoclasts and osteoblasts. However, relatively little is known about the physiological role of CGRP in-vivo in the skeletal responses to bone loading, particularly fatigue loading.

Methodology/Principal Findings

We used the rat ulna end-loading model to induce fatigue damage in the ulna unilaterally during cyclic loading. We postulated that CGRP would influence skeletal responses to cyclic fatigue loading. Rats were fatigue loaded and groups of rats were infused systemically with 0.9% saline, CGRP, or the receptor antagonist, CGRP8–37, for a 10 day study period. Ten days after fatigue loading, bone and serum CGRP concentrations, serum tartrate-resistant acid phosphatase 5b (TRAP5b) concentrations, and fatigue-induced skeletal responses were quantified. We found that cyclic fatigue loading led to increased CGRP concentrations in both loaded and contralateral ulnae. Administration of CGRP8–37 was associated with increased targeted remodeling in the fatigue-loaded ulna. Administration of CGRP or CGRP8–37 both increased reparative bone formation over the study period. Plasma concentration of TRAP5b was not significantly influenced by either CGRP or CGRP8–37 administration.

Conclusions

CGRP signaling modulates targeted remodeling of microdamage and reparative new bone formation after bone fatigue, and may be part of a neuronal signaling pathway which has regulatory effects on load-induced repair responses within the skeleton.  相似文献   

7.
Erythropoietin (EPO)/erythropoietin receptor (EPOR) signaling is involved in the development and regeneration of several non-hematopoietic tissues including the skeleton. EPO is identified as a downstream target of the hypoxia inducible factor-α (HIF-α) pathway. It is shown that EPO exerts a positive role in bone repair, however, the underlying cellular and molecular mechanisms remain unclear. In the present study we show that EPO and EPOR are expressed in the proliferating, pre-hypertrophic and hypertrophic zone of the developing mouse growth plates as well as in the cartilaginous callus of the healing bone. The proliferation rate of chondrocytes is increased under EPO treatment, while this effect is decreased following siRNA mediated knockdown of EPOR in chondrocytes. EPO treatment increases biosynthesis of proteoglycan, accompanied by up-regulation of chondrogenic marker genes including SOX9, SOX5, SOX6, collagen type 2, and aggrecan. The effects are inhibited by knockdown of EPOR. Blockage of the endogenous EPO in chondrocytes also impaired the chondrogenic differentiation. In addition, EPO promotes metatarsal endothelial sprouting in vitro. This coincides with the in vivo data that local delivery of EPO increases vascularity at the mid-stage of bone healing (day 14). In a mouse femoral fracture model, EPO promotes cartilaginous callus formation at days 7 and 14, and enhances bone healing at day 28 indexed by improved X-ray score and micro-CT analysis of microstructure of new bone regenerates, which results in improved biomechanical properties. Our results indicate that EPO enhances chondrogenic and angiogenic responses during bone repair. EPO''s function on chondrocyte proliferation and differentiation is at least partially mediated by its receptor EPOR. EPO may serve as a therapeutic agent to facilitate skeletal regeneration.  相似文献   

8.
Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E1 osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair.  相似文献   

9.
The translocations of lipopolysaccharide (LPS) from the gut and its effects on bone healing are usually of clinical interest during bone fracture. As already widely stuided, Cyclooxygenase‐2 (COX‐2) is a key enzyme for prostaglandin E2 (PGE2) production, which induces the nuclear factor kappa B (NFκB) activation and is beneficial to fracture healing. In order to know their roles in skeletal regeneration, mouse MC3T3‐E1 osteoblasts were treated with NFκB inhibitor BAY 11‐7082 and sc791 (a selective COX‐2 inhibitor), in the presence of LPS. Interestingly, LPS could induce osteoblasts proliferation through increasing NFκB activation and translocation. This induction was not related to COX‐2 expression, suggesting that LPS‐induced NFκB activiation is independent of COX‐2. It is possible that low concentration of LPS can act as a stimulating factor of the NFκB pathway in nonstimulated cells such as osteoblasts. COX‐2 is not necessary for the NFκB pathway during LPS‐induced proliferation of osteoblasts since sc791 had no effects on this induction. These studies provide insight into a potential mechanism by which LPS can affect bone tissue repair in the initial phase of inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The reduction in mechanical loading associated with space travel results in dramatic decreases in the bone mineral density (BMD) and mechanical strength of skeletal tissue resulting in increased fracture risk during spaceflight missions. Previous rodent studies have highlighted distinct bone healing differences in animals in gravitational environments versus those during spaceflight. While these data have demonstrated that microgravity has deleterious effects on fracture healing, the direct translation of these results to human skeletal repair remains problematic due to substantial differences between rodent and human bone. Thus, the objective of this study was to investigate the effects of partial gravitational unloading on long-bone fracture healing in a previously-developed large animal Haversian bone model. In vivo measurements demonstrated significantly higher orthopedic plate strains (i.e. load burden) in the Partial Unloading (PU) Group as compared to the Full Loading (FL) Group following the 28-day healing period due to inhibited healing in the reduced loading environment. DEXA BMD in the metatarsus of the PU Group decreased 17.6% (p<0.01) at the time of the ostectomy surgery. Four-point bending stiffness of the PU Group was 4.4 times lower than that of the FL Group (p<0.01), while µCT and histomorphometry demonstrated reduced periosteal callus area (p<0.05), mineralizing surface (p<0.05), mineral apposition rate (p<0.001), bone formation rate (p<0.001), and periosteal/endosteal osteoblast numbers (p<0.001/p<0.01, respectively) as well as increased periosteal osteoclast number (p<0.05). These data provide strong evidence that the mechanical environment dramatically affects the fracture healing cascade, and likely has a negative impact on Haversian system healing during spaceflight.  相似文献   

11.
Bone possesses a remarkable repair capacity to regenerate completely without scar tissue formation. This unique characteristic, expressed during bone development, maintenance and injury (fracture) healing, is performed by the reparative cells including skeletal stem cells (SSCs) and their descendants. However, the identity and functional roles of SSCs remain controversial due to technological difficulties and the heterogeneity and plasticity of SSCs. Moreover, for many years, there has been a biased view that bone marrow is the main cell source for bone repair. Together, these limitations have greatly hampered our understanding of these important cell populations and their potential applications in the treatment of fractures and skeletal diseases. Here, we reanalyse and summarize current understanding of the reparative cells in bone regeneration and repair and outline recent progress in this area, with a particular emphasis on the temporal and spatial process of fracture healing, the sources of reparative cells, an updated definition of SSCs, and markers of skeletal stem/progenitor cells contributing to the repair of craniofacial and long bones, as well as the debate between SSCs and pericytes. Finally, we also discuss the existing problems, emerging novel technologies and future research directions in this field.  相似文献   

12.
The limitation in successfully acquiring large populations of stem cell has impeded their application. A new method based on the dedifferentiation of adult somatic cells to generate induced multipotent stem cells would allow us to obtain a large amount of autologous stem cells for regenerative medicine. The current work was proposed to induce a sub‐population of cells with characteristics of muscle stem cells from myoblasts through conditional treatment of transforming growth factor (TGF)‐β1. Our results show that a lower concentration of TGF‐β1 is able to promote C2C12 myoblasts to express stem cell markers as well as to repress myogenic proteins, which involves a mechanism of dedifferentiation. Moreover, TGF‐β1 treatment promoted the proliferation‐arrested C2C12 myoblasts to re‐enter the S‐phase. We also investigated the multi‐differentiation potentials of the dedifferentiated cells. TGF‐β1 pre‐treated C2C12 myoblasts were implanted into mice to repair dystrophic skeletal muscle or injured bone. In addition to the C2C12 myoblasts, similar effects of TGF‐β1 were also observed in the primary myoblasts of mice. Our results suggest that TGF‐β1 is effective as a molecular trigger for the dedifferentiation of skeletal muscle myoblasts and could be used to generate a large pool of progenitor cells that collectively behave as multipotent stem cell‐like cells for regenerative medicine applications.  相似文献   

13.
A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to “PRISMA.” The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.  相似文献   

14.

Objective

Glucocorticoids at pharmacological doses have been shown to interfere with fracture repair. The role of endogenous glucocorticoids in fracture healing is not well understood. We examined whether endogenous glucocorticoids affect bone healing in an in vivo model of cortical defect repair.

Methods

Experiments were performed using a well characterised mouse model in which intracellular glucocorticoid signalling was disrupted in osteoblasts through transgenic overexpression of 11β-hydroxysteroid-dehydrogenase type 2 (11β-HSD2) under the control of a collagen type I promoter (Col2.3-11β-HSD2). Unicortical bone defects (∅0.8 mm) were created in the tibiae of 7-week-old male transgenic mice and their wild-type littermates. Repair was assessed via histomorphometry, immunohistochemistry and microcomputed tomography (micro-CT) analysis at 1-3 weeks after defect creation.

Results

At week 1, micro-CT images of the defect demonstrated formation of mineralized intramembranous bone which increased in volume and density by week 2. At week 3, healing of the defect was nearly complete in all animals. Analysis by histomorphometry and micro-CT revealed that repair of the bony defect was similar in Col2.3-11β-HSD2 transgenic animals and their wild-type littermates at all time-points.

Conclusion

Disrupting endogenous glucocorticoid signalling in mature osteoblasts did not affect intramembranous fracture healing in a tibia defect repair model. It remains to be shown whether glucocorticoid signalling has a role in endochondral fracture healing.  相似文献   

15.
Age-related delays in bone repair remains an important clinical issue that can prolong pain and suffering. It is now well established that inflammation increases with aging and that this exacerbated inflammatory response can influence skeletal regeneration. Recently, simple dietary supplementation with beneficial probiotic bacteria has been shown to influence fracture repair in young mice. However, the contribution of the gut microbiota to age-related impairments in fracture healing remains unknown. Here, we sought to determine whether supplementation with a single beneficial probiotic species, Bifidobacterium longum (B. longum), would promote fracture repair in aged (18-month-old) female mice. We found that B. longum supplementation accelerated bony callus formation which improved mechanical properties of the fractured limb. We attribute these pro-regenerative effects of B. longum to preservation of intestinal barrier, dampened systemic inflammation, and maintenance of the microbiota community structure. Moreover, B. longum attenuated many of the fracture-induced systemic pathologies. Our study provides evidence that targeting the gut microbiota using simple dietary approaches can improve fracture healing outcomes and minimize systemic pathologies in the context of aging.  相似文献   

16.
To evaluate further the signal transduction mechanisms involved in the short-term modulation of Na-K-ATPase activity in the mammalian kidney, we examined the role of phospholipase C-protein kinase C (PLC-PKC) pathway and of various eicosanoids in this process, using microdissected rat proximal convoluted tubules. Dopamine (DA) and parathyroid hormone (either synthetic PTH1-34 or PTH3-34) inhibited Na-K-ATPase activity in dose-dependent manner; this effect was reproduced by PKC530-558 fragment and blocked by the specific PKC inhibitor calphostin C, as well as by the PLC inhibitors neomycin and U-73122. Pump inhibition by DA, PTH, or arachidonic acid, and by PKC activators phorbol dibutyrate (PDBu) or dioctanoyl glycerol (DiC8) was abolished by ethoxyresorufin, an inhibitor of the cytochrome P450-dependent monooxygenase pathway, but was unaffected by indomethacin or nordihydroguaiaretic acid, inhibitors of the cyclooxygenase and lipoxygenase pathways of the arachidonic acid cascade, respectively. Furthermore, each of the three monooxygenase products tested (20-HETE, 12(R)-HETE, or 11,12-DHT) caused a dose-dependent inhibition of the pump. The effect of DA, PTH, PDBu or DiC8, as well as that of 20-HETE was not altered when sodium entry was blocked with the amiloride analog ethylisopropyl amiloride or increased with nystatin. We conclude that short-term regulation of proximal tubule Na-K-ATPase activity by dopamine and parathyroid hormone occurs via the PLC-PKC signal transduction pathway and is mediated by cytochrome P450-dependent monooxygenase products of arachidonic acid metabolism, which may interact with the pump rather than alter sodium access to it. Received: 7 January 1996/Revised: 24 April 1996  相似文献   

17.
BackgroundThe delay of dermal burn wound healing caused by vascular disorders is a critical problem for many diabetic patients. Thymosin β4 (Tβ4), identified by subtractive cloning of endothelial cells on plastic versus basement membrane substrates, has been found to promote angiogenesis and dermal wound repair in rats, aged mice, and db/db diabetic mice. However, previous studies involving the role of Tβ4 in wound repair were limited to mechanical damage and dermal impairment. Thus, this study aimed to evaluate the improvement of healing of burn wounds by Tβ4 in relation to advanced glycation end products (AGE), which are pathological factors in diabetes.MethodsWe adapted a dermal burn wound in vivo model in which the dorsal skin of db/db mice was exposed for 10 s to 100 °C heated water to produce a deep second-degree burn 10 mm in diameter. Five mg/kg of Tβ4 was then injected intradermally near the burn wound twice a week for 2 weeks.ResultsAfter treatment, Tβ4 improved wound healing markers such as wound closure, granulation, and vascularization. Interestingly, Tβ4 reduced levels of receptor of AGE (RAGE) during the wound healing period.Conclusions4 exerts effects to remedy burn wounds via downregulation of RAGE.General significanceOur results suggest the potential importance of Tβ4 as a new therapy for impaired burn wound healing that is associated with diabetes.  相似文献   

18.

Introduction

Sonic Hedgehog (SHH) is a new signalling pathway in bone repair. Evidence exist that SHH pathway plays a significant role in vasculogenesis and limb development during embryogenesis. Some in vitro and animal studies has already proven its potential for bone regeneration. However, no data on the role of SHH in the human fracture healing have been published so far.

Methods

Seventy-five patients with long bone fractures were included into the study and divided in 2 groups. First group contained 69 patients with normal fracture healing. Four patients with impaired fracture healing formed the second group. 34 volunteers donated blood samples as control. Serum samples were collected over a period of 1 year following a standardized time schedule. In addition, SHH levels were measured in fracture haematoma and serum of 16 patients with bone fractures.

Results

Fracture haematoma and patients serum both contained lower SHH concentrations compared to control serum. The comparison between the patients'' serum SHH level and the control serum revealed lower levels for the patients at all measurement time points. Significantly lower concentrations were observed at weeks 1 and 2 after fracture. SHH levels were slightly decreased in patients with impaired fracture healing without statistical significance.

Conclusion

This is the first study to report local and systemic concentration of SHH in human fracture healing and SHH serum levels in healthy adults. A significant reduction of the SHH levels during the inflammatory phase of fracture healing was found. SHH concentrations in fracture haematoma and serum were lower than the concentration in control serum for the rest of the healing period. Our findings indicate that there is no relevant involvement of SHH in human fracture healing. Fracture repair process seem to reduce the SHH level in human. Further studies are definitely needed to clarify the underlying mechanisms.  相似文献   

19.
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair. [BMB Reports 2014; 47(12): 666-672]  相似文献   

20.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号