共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
针对MOEA/D算法中差分进化操作收敛精度不高且速度较慢的不足,提出了一种综合基于可控支配域的向量差生成策略和基于主成分的动态缩放因子的新型差分进化模型,均衡显性与隐性搜索引导;并实现了一种基于新型差分进化模型的MOEA/D改进算法(MOEA/D-iDE)。新型差分进化是借助基于可控支配域的非支配排序对邻域进行分层,根据分层信息生成与不同进化阶段相匹配的向量差,实现对种群收敛速度的显性引导;同时对决策空间进行主成分分析,动态调整差分进化缩放因子,实现对种群收敛精度的隐性引导。实验选取ZDT、DTLZ和WFG等为测试问题,以IGD+,ER作为评价指标,将MOEA/D-iDE算法与6个同类算法进行对比实验,结果表明新算法在保证多样性的同时具有更好的收敛速度与精度,从而验证了新型差分进化模型的有效性。 相似文献
3.
在多目标进化优化中,使用分解策略的基于分解的多目标进化算法(MOEA/D)时间复杂度低,使用〖BP(〗强度帕累托策略的〖BP)〗强度帕累托进化算法-2(SPEA2)能得到分布均匀的解集。结合这两种策略,提出一种新的多目标进化算法用于求解具有复杂、不连续的帕累托前沿的多目标优化问题(MOP)。首先,利用分解策略快速逼近帕累托前沿;然后,利用强度帕累托策略使解集均匀分布在帕累托前沿,利用解集重置分解策略中的权重向量集,使其适配于特定的帕累托前沿;最后,利用分解策略进一步逼近帕累托前沿。使用的反向世代距离(IGD)作为度量标准,将新算法与MOEA/D、SPEA2和paλ-MOEA/D在12个基准问题上进行性能对比。实验结果表明该算法性能在7个基准问题上最优,在5个基准问题上接近于最优,且无论MOP的帕累托前沿是简单或复杂、连续或不连续的,该算法均能生成分布均匀的解集。 相似文献
4.
5.
为了使多目标粒子群算法中种群粒子能够快速地收敛于怕累托最优边界,针对标准多目标粒子群算法中缺乏粒子评价标准以及种群个体历史最优值位置和全局最优值位置选择问题,提出了一种基于环境选择和配对选择策略的多目标粒子群算法.该算法在每次迭代时,采用SPEA2中的环境选择和配对选择策略及适应度值计算方法,以此来提高种群粒子之间的信息交换力度,减少标准多目标粒子群算法中大量的随机性,使种群粒子能够更快速地收敛于怕累托最优边界.经典测试函数的仿真实验结果表明,在标准多目标粒子群算法中运用SPEA2的环境选择、配对选择策略和适应度值计算方法,能够使种群粒子更快速地收敛于帕累托最优边界,验证了算法改进的可行性和有效性. 相似文献
7.
针对负荷侧用户用电电费、新能源消纳率和用电峰谷差等问题,提出了一种改进的自适应基于分解的多目标进化算法,进行楼宇微电网签约住户可控负荷优化调度;通过分析负荷的用电特性,将用电负荷分为五类并分类建立数学模型、优化目标函数和约束条件;将广义分解与均匀分配相结合产生新的自适应权重向量使算法非支配解更接近真实帕累托前沿;采用历... 相似文献
8.
当多目标问题的帕累托前沿形状较为复杂时,基于分解的多目标进化算法MOEA/D的解的均匀性将受到很大的影响. MOEA/D利用相邻子问题的信息来优化,但早期因为种群中的个体与子问题的关联是随机分配的,仅在邻居间更新会浪费优秀解的信息,影响收敛速度.针对这些问题,本文提出一种MOEA/D的改进算法(MOEA/DGUAW).该算法使用种群全局更新的策略,来提高收敛速度;使用自适应调整权重向量的策略来获得更均匀分布的解集.将MOEA/D-GUAW算法与现有的MOEA/D, MOEA/D-AWA, RVEA和NSGA-III算法在10个广泛应用的测试问题上进行了实验比较.实验结果表明,提出的算法在大部分问题上,反转世代距离评价指标IGD优于其他算法,收敛速度也快于其他算法. 相似文献
9.
在进化多目标优化研究领域,多目标优化是指对含有2个及以上目标的多目标问题的同时优化,其在近些年来受到越来越多的关注。随着MOEA/D的提出,基于聚合的多目标进化算法得到越来越多的研究,对MOEA/D算法的改进已有较多成果,但是很少有成果研究MOEA/D中权重的产生方法。提出一种使用多目标进化算法产生任意多个均匀分布的权重向量的方法,将其应用到MOEA/D,MSOPS和NSGA-III中,对这3个经典的基于聚合的多目标进化算法进行系统的比较研究。通过该类算法在DTLZ测试集、多目标旅行商问题MOTSP上的优化结果来分别研究该类算法在连续性问题、组合优化问题上的优化能力,以及使用矩形测试问题使得多目标进化算法的优化结果在决策空间可视化。实验结果表明,没有一个算法能适用于所有特性的问题。然而,MOEA/D采用不同聚合函数的两个算法MOEA/D_Tchebycheff和MOEA/D_PBI在多数情况下的性能比MSOPS和NSGA-III更好。 相似文献
10.
已有的聚类算法大多仅考虑单一的目标,导致对某些形状的数据集性能较弱,对此提出一种基于改进粒子群优化的无标记数据鲁棒聚类算法。优化阶段:首先,采用多目标粒子群优化的经典形式生成聚类解集合;然后,使用K-means算法生成随机分布的初始化种群,并为其分配随机初始化的速度;最终,采用MaxiMin策略确定帕累托最优解。决策阶段:测量帕累托解集与理想解的距离,将距离最短的帕累托解作为最终聚类解。对比实验结果表明,本算法对不同形状的数据集均可获得较优的类簇数量,对目标问题的复杂度具有较好的鲁棒性。 相似文献
11.
在标准粒子群优化(particle swarm optimization, PSO)算法的基础上提出了一种带有动态惯性权重的自适应粒子群算法, 以实现移动WSN对被监测区域的覆盖。新算法引入了粒子群进化度因子和粒子群聚合度因子, 这两个因子的数值主要受粒子群的平均适应值、局部最优值和全局最优值影响。使用这两个因子调整惯性权重会使算法带有一定的自适应性, 这种自适应性使得算法在迭代过程中既不会因步长过小而局部收敛, 也不会因步长过大而跳过待求解问题的最优值。仿真结果表明, 相比标准PSO算法, 改进后的自适应PSO算法使移动WSN的覆盖率提升了5%~8%。 相似文献
12.
13.
提出一种基于粒子群算法的改进多目标文化算法并用于求解多目标优化问题.算法中群体空间采用多目标粒子群优化算法进行演化;信念空间通过对形势知识、规范化知识和历史知识的重新定义使之符合多目标优化问题;信念空间和群体空间的交互通过自适应的接受操作和影响操作来实现.若干多目标标准测试函数的仿真结果表明,改进多目标文化算法能够在保持Pareto解集多样性的同时具有较好的均匀性和收敛性. 相似文献
14.
无线传感器网络中节点计算能力和存储存能量有限的问题一直制约着无线传感器网络的发展.为此,本文提出了一种基于云PSO(particle swarm optimization)算法的无线传感器网络能量优化方法,主要包括网络分簇、网络能量模型建立、云PSO算法迭代优化等步骤.其中云PSO算法采用云理论模型优选惯性权重可以提高PSO算法的收敛速度,典型函数测试结果表明其效果优于常规PSO算法和遗传算法;在网络建模中采用二分功率控制算法可以降低网络能耗、延长节点寿命.最后经仿真试验和对比分析表明本文提出的方法在优化无线传感器网络中具有速度快、节点生存能力强的优点,并能有效地控制网络能耗. 相似文献
15.
林祝亮 《计算机工程与应用》2009,45(13):87-89
为了改善无线传感网络的网络性能,提高网络的覆盖率,实现网络覆盖范围的最大化,延长网络寿命,在多步长粒子群算法的基础上提出以网络覆盖率为优化目标的覆盖优化策略。该策略针对不同的个体情况改变粒子的最大飞行速度,实现粒子的多步长搜索,有效地解决了粒子群算法容易出现的早熟问题。仿真实验表明,与粒子群算法相比,多步长粒子群算法的有效覆盖率由74.76%提高到82.66%,到达收敛的迭代次数由360次减少到283次,收敛速度提高了21.4%。因此多步长粒子群优化策略比粒子群算法在无线传感网络覆盖优化上具有更好的效果。 相似文献
16.
提出一种改进的多目标粒子群优化算法,该算法采用精英归档策略,由档案库中的非劣解提供粒子速度更新时的全局最优位置,根据Pareto支配关系来更新粒子的个体最优位置。使用非劣解目标的线密度度量非劣解前端的均匀性,通过删除小密度的非劣解提高非劣解前端的均匀性。针对多目标进化算法理论型指标的不足,设计了应用型评价指标。标准函数的仿真实验结果表明,所提算法能够获得大量的非劣解,快速地收敛于Pareto最优解前端,且分布比较均匀。 相似文献
17.
18.
基于混沌粒子群算法的无线传感器网络覆盖优化 总被引:1,自引:0,他引:1
为了改善传感器节点随机部署时的不合理分布,提高网络覆盖率,以网络覆盖率为优化目标,提出了基于混沌粒子群的无线传感器网络覆盖优化算法。该算法利用混沌运动的遍历性和随机性,克服了粒子群算法后期陷入局部最优的缺点。仿真结果表明,该算法比基本粒子群算法具有更好的覆盖优化效果。 相似文献
19.
为解决工程优化设计问题,引入文化进化框架,提出一种拥挤距离排序的多目标文化粒子群算法.采用拥挤距离排序算子,并删除密集区域的多余粒子,以保证Pareto前沿的分布均匀性;基于拥挤距离值,从精英知识和条件知识中选择处于最分散区域的粒子,并将其分别作为全局和局部最优,以增强算法全局寻优能力;依据拥挤距离的变化,动态调整粒子群飞行参数,以提高算法收敛效率.通过标准测试问题以及与其他算法的对比,表明了所提出算法的有效性和鲁棒性. 相似文献