首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
高强度低合金钢为了控制钢中硫含量,生产过程中采用高碱度、低氧化性精炼渣,致使钢中生成尺寸较大的塑性夹杂物,严重影响钢材质量。炉渣组成对钢中夹杂物有很大影响,文章介绍了采用钢-渣平衡的方法对五种渣系(不同CaO/SiO_2和Al_2O_3%)钢中总氧和非金属夹杂物影响的研究。结果表明,钢-渣反应平衡后,顶渣中Ca O/SiO_2在1.93~4.54,Al_2O_3 %在21%~30%;钢中T.O在7×10~(-6)~19×10~(-6);钢中夹杂物呈球形,绝大多数尺寸在5μm以下,类型为Al_2O_3-Si O2-CaO-MgO系,部分夹杂物中含有少量MnO。当顶渣中Al_2O_3含量一定时,随着顶渣中(CaO+MgO)/SiO_2提高,T.O下降;夹杂物中MnO含量降低,CaO/Al_2O_3增加。当顶渣CaO/SiO_2一定时,随着渣中Al_2O_3含量的提高,T.O增加;夹杂物中Al_2O_3含量增加,CaO含量也相应增加,CaO/Al_2O_3变化不大,约在1,夹杂物中MgO含量和MgO/Al_2O_3下降。随着钢中T.O含量的增加,夹杂物的数量呈上升的趋势;钢中出现大尺寸夹杂物的几率增加。  相似文献   

2.
精炼渣系对钢中夹杂物的演变与去除有着重要影响,渣金反应导致铝脱氧钢中大量形成MgO-Al_2O_3夹杂物,危害钢材的表面质量与疲劳性能.为了降低渣中MgO的反应性,文中依据分子离子共存理论,建立了CaO-SiO_2-MgO-Al_2O_3系精炼渣的活度计算模型,利用该模型,计算分析了渣中MgO含量、SiO_2含量、CaO/Al_2O_3和CaO/SiO_2对渣中MgO活度的影响规律.结果表明,增加Si O2含量可显著降低MgO活度.当MgO含量为10%时,控制CaO/Al_2O_3小于1和CaO/SiO_2小于0.6可有效降低MgO活度.  相似文献   

3.
<正>目前常用的脱硫精炼渣主要由CaO、Al_2O_3、SiO_2、MgO、CaF_2等成分组成。CaO是碱性氧化物,对脱硫起主要作用;Al_2O_3本身呈酸性,无脱硫作用,在一定程度上能降低熔渣的碱度。但是Al_2O_3能与CaO结合成低熔点化合物,降低精炼渣的熔点;SiO_2主要起助熔剂作用,它对精炼渣发泡,减少钢中点状夹杂物也有一定作用;MgO与硫有一定结合能力,但是这种结合能力不如CaO,而且MgO  相似文献   

4.
为了优化55SiCrA弹簧钢中夹杂物的组成和形态,采用热力学软件Factsage分别研究了CaO、SiO_2含量对CaO-SiO_2-Al_2O_3-MgO与CaO-SiO_2-Al_2O_3-MnO系相图低熔点区域面积的影响,研究结果表明:随着CaO和SiO_2含量的增加,CaO-SiO_2-Al_2O_3-MnO系相图低熔点区域面积分数逐步增大;在CaO-SiO_2-Al_2O_3-MgO系中,当CaO的质量分数为40%,SiO_2的质量分数为50%时,对应相图的低熔点区域面积最大。同时,研究了不同碱度的精炼渣对钢样中夹杂物的影响,结果表明:当精炼渣的Al_2O_3含量相同时,随着精炼渣碱度的增大,夹杂物中Al_2O_3的含量不断增加,其成分逐渐偏离低熔点区域。当精炼渣中Al_2O_3的质量分数为8%,碱度为1.2时,可得到低熔点的塑性夹杂物,形貌多为球形,尺寸在5μm以下。  相似文献   

5.
《炼钢》2021,37(2):62-69
对采用"BOF→LF→RH→CC"工艺生产EH36船板钢过程中的夹杂物进行了研究。用SEM-EDS分析了试样中的夹杂物形貌和成分,用FactSage软件计算了夹杂物的析出情况。研究表明:LF进站钢液中夹杂物主要为SiO_2,试样中的MnS是在试样凝固过程中形成的。Ca处理后,液态夹杂物数量增多。经过RH处理后,夹杂物中Al_2O_3含量升高,CaO和MgO含量降低。中间包钢液中夹杂物的Al_2O_3含量降低,CaO含量升高,夹杂物与渣发生反应,使夹杂物成分向低熔点区靠近。中间包渣中SiO_2含量较高,与钢中Al发生反应,使钢液中Si含量升高,Al含量降低。钢液凝固过程中发生成分偏析,使铸坯中夹杂物的S含量明显升高,Al_2O_3含量升高,CaO含量降低。在铸坯中形成了CaO和Al_2O_3比例不同的钙铝酸盐夹杂物以及Al_2O_3夹杂物,且部分钙铝酸盐表面形成CaS。  相似文献   

6.
《炼钢》2021,37(2):16-22,29
从"AOD→LF→钙处理→连铸"进行全流程取样,重点分析316L不锈钢中氧氮含量、夹杂物数密度和成分。研究发现:在冶炼过程中,钢中w(T.O)逐渐降低,钙处理后为24×10~(-6),较AOD还原结束时降低183×10~(-6),浇铸时存在二次氧化,铸坯试样中w(T.O)增加8×10~(-6)。AOD还原期结束时,夹杂物类型主要为SiO_2-MnO系。LF进站时为CaO-Al_2O_3-SiO_2系和CaO-Al_2O_3-MgO系,前者主要来源于AOD卷渣和钢中Al反应生成,后者主要来源于SiO_2-MnO系夹杂物与钢中Al以及渣相反应生成。对于CaO-Al_2O_3-SiO_2系,LF进站时夹杂物平均成分偏离低熔点区,随着精炼过程的进行,夹杂物中CaO含量降低,Al_2O_3含量升高,其平均成分位于低熔点区内;对于CaO-Al_2O_3-MgO系,夹杂物中MgO含量升高,MgO·Al_2O_3尖晶石夹杂物数量增加,经过钙处理和静置上浮,CaO-Al_2O_3-MgO系夹杂物逐渐消失,夹杂物改性较为充分。  相似文献   

7.
通过电弧炉出钢加铝铁、硅铁脱氧,LF精炼初渣的组分为(/%:27.39~37.34Al_2O_3,38.42~38.68CaO,14.20~18.38SiO_2,8.50~10.72MgO,0.82~0.89FeO,0.27~0.33MnO,0.69~0.74S,0.66~0.75TiO_2,(CaO)/(SiO_2)=2.09~2.72,(CaO)/(Al_2O_3)=1.04~1.40),LF终点T[O]为0.001 2%~0.0019%,T[N]为0.004 3%~0.005 0%,[Ti]0.002%和[Ca]0.006%~0.009%。GCr15轴承钢LF精炼终点氧化物夹杂分析结果表明,钢中主要氧化物夹杂为镁铝尖晶石(MgO·Al_2O_3)和钙镁铝尖晶石氧化物(CaO·MgO·Al_2O_3)。镁铝尖晶石平均尺寸低于0.5μm,当有MnS、TiN等在其上析出后平均尺寸增大。钙镁铝尖晶石平均尺寸通常在2μm以上,在精炼温度下呈液态,易在钢中聚集长大,其尺寸(1.39~2.12μm)比固态的钙镁铝尖晶石-MnS夹杂物大,且更被精炼渣吸收并上浮去除。随着精炼过程钢液中的硫含量降低,以这两类尖晶石为核心的含MnS的复合夹杂物的平均尺寸降低。适当降低精炼终点渣中MgO的含量、光学碱度和黏度可以减少钢中夹杂物的数量并降低其平均尺寸。  相似文献   

8.
夹杂物是影响无取向电工钢磁性能的重要因素之一,为了研究无取向电工钢生产过程中氧化物特征的变化,对W800无取向电工钢全流程取样分析。采用荧光光谱分析和氧氮联合分析仪分析了炉渣和钢中全氧含量的变化。采用直接磨抛后1∶1盐酸水溶液酸蚀和非水溶液小样电解的方法揭示了钢中氧化物的形貌特征。采用ASPEX对钢中氧化物的成分、尺寸、数量进行分析。试验结果表明,加Al合金化前,钢中的氧化物类型主要为球体或近球体的SiO_2和含有少量的SiO_2包裹SiO_2-MnO;加Al合金化后,氧化物转变为Al_2O_3和MgO·Al_2O_3。通过直接磨抛和1∶1盐酸水溶液酸蚀的方法只能揭示出球形和多面体的Al_2O_3。采用非水溶液电解提取可以看到Al_2O_3的3种形貌为球体、树枝状和多面体。RH精炼过程中,夹杂物平均成分接近纯Al_2O_3,MgO的质量分数仅为0.2%。而在中间包冶炼过程中,夹杂物中MgO比例提高。软吹过程对于促进夹杂物长大和去除具有显著效果,也促进了耐火材料的侵蚀,使夹杂物中MgO的质量分数升高至8.1%。由于精炼过程采用较低的碱度和钙铝比,夹杂物中几乎不含CaO。通过Factsage热力学计算得出,随着Al的加入量增多,钢中的夹杂物类型依次为纯SiO_2,液态的SiO_2-Al_2O_3和Al_2O_3,与观察到的结果相符。  相似文献   

9.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

10.
分析了石油套管钢37Mn5的精炼渣碱度w(CaO)/w(SiO_2),Al_2O_3和CaF_2、w(FeO)质量分数对37Mn5钢脱硫效果的影响。结果表明,随渣中w(CaO)/w(SiO_2)增加,脱硫率先增后减;随渣中w(FeO)降低,脱硫率明显增大;随渣中CaF_2质量分数增加,脱硫率先增后减;渣中Al_2O_3含量在9-14%时炉渣脱硫效果较好。实验优化的最佳脱硫渣系组成为(CaO)/w(SiO_2)=2.9-3.2,w(MgO)=5.5%,(FeO+MnO)1%,w(CaF_2)=4%~7%,w(Al_2O_3)=15%。  相似文献   

11.
对采用"LF-VD-CC"工艺路线生产的304奥氏体不锈钢精炼过程全氧和夹杂物进行了分析。结果表明,随着LF-VD-CC过程进行,304钢液中全氧含量、夹杂物数量密度和夹杂物平均尺寸呈逐渐减小的趋势。整个精炼过程,夹杂物类型都为CaO-SiO_2-Al_2O_3-MgO,VD后跟LF出站相比,夹杂物中Al_2O_3和MgO含量都有一定的增加。到连铸中间包后,夹杂物中Al_2O_3和MgO含量明显增加,CaO含量明显降低,主要跟温度降低有关,试验结果跟热力学计算结果有较好的一致性。  相似文献   

12.
通过取样检测结合热力学计算,分析了钙处理对成品无取向硅钢中夹杂物特征及硫化物夹杂的析出机制的影响。结果表明,钢中尺寸大于3μm的有害夹杂物主要是AlN、MgO-SiO_2、CaO-Al_2O_3-SiO_2类复合夹杂物及其与MgS、MnS、CaS的复合析出物。钙处理钢中没有检测到单独的Al_2O_3、SiO_2及铝酸钙类夹杂物。钙处理钢中形成的液态3CaO·Al_2O_3、MgO·SiO_2和Al_2O_3夹杂物被精炼渣吸收,改性去除了钢中大尺寸Al_2O_3夹杂物。钙处理钢中尺寸大于3μm的氧化物夹杂主要是含CaO和(或)CaS的Al_2O_3-SiO_2类夹杂。硫化物在MgO-SiO_2类氧化物表面的析出有利于其形貌趋于规则。钢中不同形貌的AlN夹杂物呈多尺度分布,钙处理对大尺寸AlN的析出特性影响不大。氧硫化物及其与AlN复合析出并定向长大的过程,与其晶体结构有关。氧化物夹杂的硫容量决定了其与硫复合的难易程度。钙处理钢中CaS在氧化物表面呈局部包裹析出和局部吸附析出。  相似文献   

13.
采用氧氮分析仪、扫描电镜、金相显微镜等分析手段,系统研究LF精炼渣系对304系不锈钢全氧质量分数wT[O]、夹杂物数量、尺寸及成分的影响。研究结果表明,当LF精炼渣碱度由1.5升高至2.6时,LF出站溶解氧质量分数w[O]由11.6×10~(-6)降低至4.8×10~(-6),铸坯wT[O]由47×10~(-6)降低至24×10~(-6),铸坯夹杂物总数量降低,但当量直径不大于10μm的夹杂物所占比率由77.7%增加至95.1%。热力学计算结果表明:在钢液中各元素达到平衡状态时,渣系碱度越高,低熔点夹杂物2MgO·2Al_2O_3·5SiO_2生成区域越小,MgO·Al_2O_3尖晶石类夹杂物生成区域越大,与生产试验结果一致。随着LF炉渣碱度升高,铸坯夹杂物成分中MgO和Al_2O_3的质量分数分别升高了14.4%和9.1%,当碱度不大于1.9时,铸坯中不会存在镁铝尖晶石。  相似文献   

14.
《炼钢》2017,(2)
针对某厂20CrMnTi齿轮钢生产过程中全氧含量控制偏高,夹杂物控制水平差等问题,研究利用FactSage热力学软件计算结果着重探讨精炼渣碱度、w(CaO)/w(Al_2O_3)、MI指数与Al_2O_3夹杂吸附能力的影响关系,最终得到适用于该厂生产齿轮钢(20CrMnTi)的LF精炼渣系范围为:w(CaO)=50%~55%,w(Al_2O_3)=22%~26%,w(SiO_2)=10%~12%,w(MgO)=5%~7%。使用该渣系进行工业试验,铸坯中全氧质量分数由17×10~(-6)降至14×10~(-6),且铸坯中显微夹杂物尺寸也明显降低,由2.0μm降至1.4μm,且工艺优化后铸坯中观察到的绝大部分夹杂物都在1 500℃液相线以内变化,夹杂物变性效果良好。  相似文献   

15.
《特殊钢》2017,(1)
采用热力学计算方法得出316L不锈钢(/%:0.02C,0.51Si,1.15Mn,0.030P,0.001S,16.77Cr,10.12Ni,2.07Mo,0.040N,0.006Ti,0.004A1)精炼过程中脱氧平衡后形成MgO·Al_2O_3、2MgO·SiO_2、3Al_2O_3·2SiO_2、2NgO·2Al_2O_3·5SiO_2优势区图,研究和分析了各类夹杂物生成与转变的热力学条件。结果表明,在1 873 K时,当钢液中的溶解Al含量低于0.001%和溶解Mg含量低于2×10~(-7)%时才能形成低熔点变形能力较好的2MgO·2Al_2O_3·5SiO_2类夹杂物;当钢液中溶解Al含量在1.7×10~(-4)%以下,钢液中不形成MgO·Al_2O_3尖晶石夹杂;2MgO·SiO_2与3Al_2O_3·2SiO_2类高熔点夹杂物形成区域最大。实践表明,加Ca对高熔点夹杂物2MgO·SiO_2与3Al_2O_3·2SiO_2变性处理的热力学条件充足,当316L不锈钢180 t LF钢液溶解氧为0.002 0%,进行喂硅钙线2 m/t,精炼终点[O]为0.001 5%,2 mm冷轧板夹杂物为C类0.5~1.0级,主要成分为CaO·Al_2O_3·SiO_2。  相似文献   

16.
分别使用镁钙质和镁碳质两种钢包包衬,对帘线钢进行了LF精炼。利用Aspex扫描电镜,研究分析了不同镁质耐材料对钢中夹杂物成分、尺寸及数量的影响,并通过FactSage热力学计算对夹杂物的变化规律进行了解释。结果表明,LF精炼开始阶段,夹杂物主要以SiO_2-MnO为主;随着冶炼的进行,镁钙质包衬炉次的夹杂物中Al_2O_3、CaO及MgO含量有所上升,而镁碳质包衬炉次中夹杂物成分基本不变。使用不同包衬时,软吹开始之后,钢中夹杂物数密度都趋于稳定值8个/mm~2,而夹杂物平均尺寸变化则不同。使用镁碳质包衬时夹杂物平均尺寸相对较高,软吹开始时达到峰值2.5μm左右;而使用镁钙质包衬时,夹杂物尺寸最终稳定在1.0μm左右。随着钢中Al含量的增加,夹杂物中Al_2O_3含量逐渐增加,SiO_2含量逐渐下降, CaO和MnO的含量几乎不变。  相似文献   

17.
为了研究钢液凝固和冷却过程中非金属夹杂物的生成热力学,以U75V重轨钢为研究对象,通过Aspex自动扫描电镜对不同钢液成分的中间包钢水样和连铸坯样进行分析,结合热力学计算,得到了重轨钢凝固和冷却过程中夹杂物的转变机理。研究结果表明,重轨钢中间包内主要为CaO-SiO_2-Al_2O_3-MgO型夹杂物,且夹杂物成分均匀;凝固冷却过程不仅导致夹杂物成分的变化,也会导致相的不均匀性,连铸坯中的夹杂物为CaO-SiO_2-Al_2O_3-MgO-CaS型,夹杂物中CaO含量降低,CaS含量升高,凝固冷却后的夹杂物由CaS、MgO·Al_2O_3以及CaO-SiO_2-Al_2O_3-MgO等多相组成,其中MgO·Al_2O_3相位于CaO-SiO_2-Al_2O_3-MgO相内部,最外层包裹CaS。热力学计算结果与试验结果基本吻合,夹杂物成分差异可能由于热力学和动力学条件不足引起。  相似文献   

18.
《特殊钢》2017,(4)
100 t LF原精炼终渣(/%:53.8CaO,8.16MgO,16.6SiO_2,17.45Al_2O_3,1.44TFe,1.26S,R3.08)优化成终渣(/%:51.3CaO,6.36MgO,25.0SiO_2,6.73Al_2O_3,2.96TFe,0.76S,R2.05)后,通过降低碱度和渣中Al_2O_3含量,65Mn钢(/%:0.63~0.65C,0.19~0.22Si,0.92~0.96Mn,0.005~0.006S,0.021~0.022P,0.003 5~0.0037T[O])中的夹杂物当量个数由18.4个/mm~2减少到11.3个/mm~2,其平均直径由8.4μm减小到4.5μm。相比原精炼渣系,采用优化渣系的65Mn在LF出站时的钢中Al_2O_3由5.9个/mm~2降低到1.7个/mm~2;其CaO-SiO_2-Al_2O_3和CaO-SiO_2-Al_2O_3-MgO复合夹杂物中Al_2O_3含量由38.3%~44.7%降低到17.5%~28.7%。B类Al_2O_3夹杂物不合格的卷数由6%降至3%。  相似文献   

19.
基于前人的研究结果,通过热力学计算软件Factsage 7.1分析了20CrMnTiH齿轮钢中复合脱氧平衡。热力学计算结果表明, LF精炼初期,钢中非金属夹杂物的主要成分为Al_2O_3;随着耐火材料的侵蚀以及合金的加入,氧化物夹杂转变为Al_2O_3·MgO,并含有少量CaO;钛合金化后,氧化物夹杂的种类无明显变化,主要成分为Al_2O_3·MgO,由于钛铁中带入少量Ca,氧化物夹杂中CaO略有增加;钙处理后,氧化物夹杂中CaO含量明显增加,Al_2O_3·MgO转变为Al_2O_3·MgO·CaO,夹杂物的平均成分落入液态夹杂物区域。热力学计算结果与实际生产过程中夹杂物的转变具有相同的规律,但实际生产过程由于多元脱氧体系中合金及脱氧元素加入顺序以及动力学因素导致与实际情况具有一定差异。  相似文献   

20.
齐广  王福明  沈伟 《炼钢》2020,36(3):62-67
针对气保焊丝钢ER70S-6中大颗粒不变形夹杂易在拉拔过程引起断丝的问题,通过FactSage软件对其夹杂物的塑性化控制进行了热力学分析以及工业试验。计算结果表明,非铝脱氧的低飞溅气保焊丝钢中夹杂物熔点随Al_2O_3含量的增加先降低后升高,随MgO含量的增加呈上升趋势;钢液中Ca、Mg、Al的含量随着精炼渣碱度的升高而升高。实际生产过程中,随着精炼渣碱度提高,夹杂物中Al_2O_3和MgO含量有所上升,夹杂物的变形能力降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号