首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

2.
Irradiation of white fluorescent light (5 W m2) inhibitedthe growth of Oryza coleoptiles. Light irradiation increasedstress-relaxation parameters of coleoptile cell walls, minimumstressrelaxationtime and relaxation rate, and decreased cellwall extensibility (strain/load). Under light conditions, thecontents of ferulic and diferulic acids ester-linked to thehemicellulosic arabinose residue in cell walls increased andcorrelated with the modification of the cell wall mechanicalproperties. These results suggest that light irradiation enhancesthe formation of diferulic acid bridges in hemicelluloses, makingcell walls mechanically rigid and thus inhibits cell elongationin rice coleoptiles. Also, irrespective of coleoptile age orthe presence of light, the ratio of diferulic acid to ferulicacid was almost constant, suggesting that the rate limitingstep in the formation of diferulic acid bridges in Oryza cellwalls is in the step of feruloylation. (Received September 24, 1991; Accepted December 3, 1991)  相似文献   

3.
White fluorescent light (5 W m−2) inhibited Avena coleoptile growth. Light caused in increase in minimum stress relaxation time and a decrease in extensibility (strain/load) of coleoptile cell walls. Light increased the contents of ferulic acid (FA) and diferulic acid (DFA) ester-linked to the hemicellulose I in cell walls. These changes in the phenolic contents correlated with those of the mechanical properties of cell walls, suggesting that light stimulates the formation of DFA in hemicellulose I, making cell walls rigid, and thus results in growth inhibition. The ratio of DFA to FA was almost constant in the dark, but decreased in light, although it was almost constant in Oryza coleoptiles either in the dark or in light (Tan et al. 1992). From this fact, it is speculated that in the light condition, the formation of DFA in cell walls is limited in the step of the peroxidase catalyzed coupling reaction to produce DFA, while in the dark it is limited in the step of the feruloylation of hemicellulose I.  相似文献   

4.
Effects of polyethylene glycol (PEG)-induced osmotic stress on the mechanical properties of cell walls and the levels of their components were investigated along intact wheat (Triticum aestivum L.) coleoptiles. Stress-relaxation analysis showed that the cell walls of stressed coleoptiles were loosened as compared with those of unstressed ones not only in the apical but in the basal regions. The amounts of wall-bound ferulic acid (FA) and diferulic acid (DFA) of stressed coleoptiles were substantially lower than those of unstressed ones in all regions. The cellulose and hemicellulose contents increased toward the coleoptile base. Osmotic stress reduced the cellulose content in the basal region but it slightly affected the hemicellulose content. The molecular weight of hemicellulose in the apical region of stressed coleoptiles was higher than that of unstressed ones, while that in the basal region was almost the same in both coleoptiles. FA, DFA and cellulose contents correlated with the cell wall mechanical property. The amount and molecular weight of hemicellulose, however, did not correlate. These results suggest that the reduced levels of FA and DFA in all regions and cellulose in the basal region of wheat coleoptiles are involved in maintaining the cell wall extensibility under osmotic stress.  相似文献   

5.
To elucidate the mechanism by which white fluorescent light (5 W m-2) stimulates the formation of diferulic acid (DFA) in cell walls, the effect of light on phenylalanine-and tyrosine-ammonia-lyase (PAL, EC 4.3.1.5 and TAL, EC 4.3.1.5) and peroxidase activities was studied using coleoptiles of maize ( Zea mays L. cv. Cross Bantam T51). Growth rate of dark-grown coleoptiles was highest at the basal zone and decreased towards the tip, while continuous irradiation caused an inhibition of growth, especially at the basal zone. Light decreased the cell wall extensibility in all zones of the coleoptile. The amounts of DFA, ferulic acid (FA) and p -coumaric acid ( p -CA) increased by severalfold in cell walls of light-grown maize coleoptiles as compared with those grown in the dark. Strong correlations were observed between the increase in the contents of either DFA, FA or p -CA and the decrease in cell wall extensibility. Light decreased the wall-bound peroxidase activity. No correlation was found between DFA content and peroxidase activity. The activities of PAL and TAL were enhanced upon white light irradiation. The increment in either DFA, FA or p -CA content was correlated with an increase in PAL activity, but not with that in TAL activity. White light may promote DFA formation in the cell walls of maize coleoptiles by enhancing PAL activity.  相似文献   

6.
The effect of submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) on coleoptile growth and ultrastructure, extensibility and chemical composition of the cell walls was investigated. The lag-time between start of submergence and the onset of the enhancement of growth was less than 4 h. The growth response was associated with a drastic thinning of the cell walls and an increase in wall extensibility. At the outer epidermal wall of both air-grown and submerged coleoptiles electron-dense (osmiophilic) particles were detected. During submergence, the net accumulation of cellulose and hemicellulose was reduced, but the increase in pectic substances was unaffected. Submergence caused an 80% inhibition of the net accumulation of wall-bound phenolics (ferulic- and diferulic acid) compared with air-grown controls. The osmotic concentration of the tissue saps was not affected by submergence. Our results support the hypothesis that rapid coleoptile elongation under water is caused by an inhibition of the formation of phenolic cross-links between matrix polysaccharides via diferulate, which results in a mechanical stiffening of the cell walls in the air-grown coleoptile.  相似文献   

7.
The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice ( Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10–50°C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30–40°C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40°C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30–40°C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40°C were substantially higher than those grown at 10, 20 and 50°C. Furthermore, the activities of (1→3),(1→4)- β -glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1→3),(1→4)- β -glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30–40°C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of β -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of β -glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.  相似文献   

8.
The cell walls in the elongating zone of submerged floating rice internodes show high susceptibility to expansins. When internode sections corresponding to such an elongation zone were incubated for 24 h under osmotic stress conditions produced by treatment with 100 mM polyethylene glycol 4000 (PEG), the cell wall susceptibility to expansins remained at its initial level, while the susceptibility of internode sections incubated under unstressed conditions decreased considerably during the same period. The contents of polysaccharides and phenolic acids as ferulic, diferulic and p-coumaric acids in the cell walls of internode sections increased substantially under unstressed conditions, but the increases were almost completely prevented by osmotic stress. Ferulic acid applied to internode sections under osmotic stress reduced the susceptibility of the cell walls to expansins and increased the levels of ferulic and diferulic acids in the cell walls, with little effect on the accumulation of polysaccharides. In contrast, applied p-coumaric acid increased the level of p-coumaric acid in the cell walls without a change in the levels of ferulic and diferulic acids but did not reduce the susceptibility to expansins. These results suggest that the deposition of ferulic and diferulic acids is a primary determinant in regulating the reduction of the susceptibility of cell walls to expansins in floating rice internodes.  相似文献   

9.
Naoto Shibuya 《Phytochemistry》1984,23(10):2233-2237
Ferulic acid, p-coumaric acid and diferulic acid were detected in the alkaline extract of rice endosperm cell walls. The amount of each component was estimated as 9.1, 2.5 and 0.56 mg/g cell wall, respectively. Several phenolic-carbohydrate esters were isolated from the enzymatic digest of this cell wall, which included a series of ferulic acid esters of arabinoxylan fragments and also some fractions containing a high proportion of diferulic acid.  相似文献   

10.
The relationship between the formation of cell wall-bound ferulic acid (FA) and diferulic acid (DFA) and the change in activities of phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) was studied in rice shoots. The length and the fresh mass of shoots increased during the growth period from day 4 to 6, while coleoptiles ceased elongation growth on day 5. The amounts of FA and DFA isomers as well as cell wall polysaccharides continued to increase during the whole period. The activities of PAL and CW-PRX greatly increased in the same manner during the period. There were close correlations between the PAL activity and ferulate content or between the CW-PRX activity and DFA content. The expression levels of investigated genes for PAL and putative CW-PRX showed good accordance with the activities of these enzymes. These results suggest that increases in PAL and CW-PRX activities are cooperatively involved in the formation of ferulate network in cell walls of rice shoots and that investigated genes may be, at least in part, associated with the enzyme activities. The substantial increase in such network probably causes the maturation of cell walls and thus the cessation of elongation growth of coleoptiles.  相似文献   

11.
Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid, the precursor of ethylene, stimulated elongation of coleoptiles of seedlings of intact rice ( Oryza sativa L. cv. Sasanishiki) submerged in buffer solution with constant air-bubbling. The osmotic pressure of the cell sap decreased during elongation of coleoptiles. In the presence of 30 μ M aminooxyacetic acid, an inhibitor of ethylene biosynthesis, in-dole-3-acetic acid at 30 μ M accelerated the decrease in the osmotic pressure in the early stage of growth. 1-Aminocyclopropane-1-carboxylic acid at 30 μ M did not influence the decrease in the osmotic pressure.
Both indole-3-acetic acid and 1-aminocyclopropane-1-carboxyIic acid decreased the minimum stress-relaxation time and the relaxation rate of the cell wall, suggesting that both auxin and ethylene induce elongation of rice coleoptiles by stimulating cell wall loosening. These growth regulators caused an increase in the level of glucose in hemicelluloses in the early stage of growth and a decrease in the level in the subsequent last growth phase. Indole-3-acetic acid decreased the hydroxyproline and glucosamine levels per unit dry weight of the cell wall. These changes in the level of cell wall components may be associated with the changes in the mechanical properties of the cell walls caused by auxin and ethylene.  相似文献   

12.
Changes in the amount and composition of cell wall constituents in response to continuous hypergravity stimuli were studied in wheat ( Triticum aestivum L.) coleoptiles. The lengths of coleoptiles grown under hypergravity (300  g ) conditions for 2–4 days from germination stage were 60–70% of those of 1  g control. However, the net amounts of hemicellulosic polysaccharides and cellulose in hypergravity-treated coleoptiles increased progressively as much as those in the control coleoptiles. As a result, their contents per unit length of coleoptile largely increased under hypergravity conditions. In the hemicellulose fraction, the amounts of arabinose and xylose, the major components of the fraction, prominently increased in response to hypergravity. When hemicellulosic polysaccharides were separated into neutral and acidic polymers by an anion-exchange column, the amounts of the acidic fraction consisting of (glucurono)arabinoxylans were higher in hypergravity-treated coleoptiles than in control coleoptiles. The amounts of cell wall-bound ferulic acid and diferulic acid (DFA) increased dramatically in both 1  g control and hypergravity-treated coleoptiles. Particularly, the amounts of DFA in hypergravity-treated coleoptiles were significantly higher than those in control coleoptiles during the incubation period. These results suggest that continuous hypergravity increases the rigid network structures via arabinoxylan–hydroxycinnamate cross-links within cell wall architecture in wheat coleoptiles. These structures may have a load-bearing function and contribute to construct the stable cell wall against the gravitational force.  相似文献   

13.
The effect of the oxygen supply on growth, water absorptionof cells and cell wall changes was studied in coleoptiles ofrice seedlings growing under three different conditions: underwater, under water with constant air bubbling and in air. Coleoptilegrowth was larger when they were grown under water than in waterwith air bubbling and in air. Coleoptile growth under waterwas limited by the suction force of their cells rather thanby mechanical properties of the cell wall, while that of thecoleoptiles growing under the other two conditions was limitedby the cell wall rigidity. A decrease in the relative amountof noncellulosic glucose of the cell wall, and an increase inthe noncellulosic xylose during coleoptile growth were foundfor all three culture conditions. 1 Present address: Departamento de Fisiologia Vegetal, Facultadde Ciencias, Universidad, Salamanca, Spain. (Received May 21, 1979; )  相似文献   

14.
Effects of silicon on the mechanical and chemical properties of cell walls in the second leaf of oat (Avena sativa L.) seedlings were investigated. The cell wall extensibility in the basal region of the second leaf was considerably higher than that in the middle and subapical regions. Externally applied silicon increased the cell wall extensibility in the basal region, but it did not affect the extensibility in the middle and subapical regions. The amounts of cell wall polysaccharides and phenolic compounds, such as diferulic acid (DFA) and ferulic acid (FA), per unit length were lower in the basal region than in the middle and subapical regions of the leaf, and silicon altered these amounts in the basal region. In this region, silicon decreased the amounts of matrix polymers and cellulose per unit length and of DFA and FA, both per unit length and unit matrix polymer content. Silicon treatment also lowered the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) in the basal region. In contrast, the amount of silicon in cell walls increased in response to silicon treatment in three regions. These results suggest that in the basal region, silicon reduces the net wall mass and the formation of phenolic acid-mediated cross-linkages between wall polysaccharides. Such modifications of wall architecture may be responsible for the silicon-induced increase in the cell wall extensibility in oat leaves.  相似文献   

15.
The relationship between the mechanical properties of cell walls and the levels of wall-bound ferulic (FA) and diferulic (DFA) acids was investigated in wheat (Triticum aestivum L.) coleoptiles grown under osmotic stress (60 mM polyethylene glycol [PEG] 4000) conditions. The cell walls of stressed coleoptiles remained extensible compared with those of the unstressed ones. The contents of wall-bound FA and DFA increased under unstressed conditions, but the increase was substantially reduced by osmotic stress. In response to PEG removal, these contents increased and reached almost the same levels as those of the unstressed coleoptiles. A close correlation was observed between the contents of FA and DFA and the mechanical properties of cell walls. The activities of phenylalanine ammonia-lyase and tyrosine ammonia-lyase increased rapidly under unstressed conditions. Osmotic stress substantially reduced the increases in enzyme activities. When PEG was removed, however, the enzyme activities increased rapidly. There was a close correlation between the FA levels and enzyme activities. These results suggest that in osmotically stressed wheat coleoptiles, reduced rates of increase in phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities suppress phenylpropanoid biosynthesis, resulting in the reduced level of wall-bound FA that, in turn, probably causes the reduced level of DFA and thereby maintains cell wall extensibility.  相似文献   

16.
Fluorescence microscopy of rice (Oryza sativa L.) callus sections showed that all of the walls fluoresced blue in water (pH 5.8) and green in ammonia (pH 10.0), both characteristics of feruloyl esters. Such fluorescence in the walls of cells cultured in Gamborg's B5 medium was much stronger than that in amino acid (AA) medium. Laser scanning microscopy showed that the level of fluorescence was higher in the intercellular layer, especially at corner junctions between cells, suggesting that ferulic acid ester derivatives are located in the middle lamella as well as in the wall. Extracellular polysaccharides appearing during cultivation in AA medium were more highly feruloylated than those in B5 medium during cultivation. Both the levels of ferulic and diferulic acid and the relative proportion of diferulic acid in the walls of cells increased on transfer of the cells cultured in AA medium to B5 medium. The walls of cells cultured in B5 medium maintained constant levels and proportions of the phenolic acids. Removal of phenolic acids from wall preparations by carboxylesterase facilitated the solubilization of noncellulosic polysaccharides. Treatment of the cell aggregates grown in AA medium with an enzyme that hydrolyzes feruloyl esters decreased the size of the aggregates to between 20 and 500 [mu]m, compared with an original size between 200 and 1000 [mu]m. These findings suggest that feruloyl and diferuloyl esters between polysaccharides are involved in the aggregation of cultured rice cells.  相似文献   

17.
Elongation growth of dark grown maize (Zea mays L cv. Cross Bantam T51) coleoptiles and mesocotyls was suppressed by hypergravity at 30 g and above. Acceleration at 300 g significantly decreased the mechanical extensibility of cell walls of both organs. Hypergravity increased the amounts of hemicellulose and cellulose per unit length in mesocotyl walls, but not in coleoptile walls. The weight average molecular masses of hemicellulosic polysaccharides were also increased by hypergravity in both organs. On the other hand, the activities of beta-glucanases extracted from coleoptile and mesocotyl cell walls were decreased by hypergravity. These results suggest that the decreased activities of beta-glucanases by hypergravity cause an increase in the molecular mass of hemicellulosic polysaccharides of both organs. The upshift of molecular mass of hemicellulosic polysaccharides as well as the thickening of cell walls under hypergravity conditions seems to be involved in making the cell wall mechanically rigid, thereby inhibiting elongation growth of maize coleoptiles and mesocotyls.  相似文献   

18.
The growth rate of maize ( Zea mays L. cv. Cross Bantam T51) coleoptiles in the dark was highest at the basal zone and decreased towards the tip. Growth was strongly inhibited by white fluorescent light (5 W m−2), especially in the basal zone of coleoptiles. Light irradiation caused an increase in the values of stress-relaxation parameters, the minimum stress-relaxation time and the relaxation rate and a decrease in the extensibility (strain/stress) of the cell walls at all zones. In addition, during growth, the accumulation of osmotic solutes was strongly inhibited by white light irradiation, resulting in an increased osmotic potential. The influences of white light on the mechanical properties of the cell wall and the osmotic potential of the tissue sap were most prominent in the basal zone. Significant correlations were observed between the increment of coleoptile length and the mechanical properties of the cell walls or the osmotic potential of the tissue sap and osmotic solutes content. Furthermore, light inhibited the outward bending of split coleoptile segments. These facts suggest that white light inhibits elongation of maize coleoptiles by modifying both the mechanical properties of the cell walls and cellular osmotic potential, which control the rate of water uptake.  相似文献   

19.
The metabolism of lipids, like that of other components, was adversely and strongly affected when rice (Oryza sativa L.) coleoptiles were grown anaerobically. In aerobic coleoptiles, the amounts of total fatty acid, phospholipid, and total lipid per coleoptile increased by 2.5- to 3-fold between days three and seven, whereas under anoxia, the increases were all less than 60%. The total amount of lipid at day seven in anoxia was less than 30% of that in air. In air, the total fatty acid content at day three was 25 nanomoles per coleoptile and this increased to over 71 nanomoles per coleoptile at day seven. All acids except 18:0 showed substantial increases. In anoxia, the corresponding values for total fatty acids were 24 nanomoles and 27 nanomoles. The small increases were confined to the saturated fatty acids; no significant increase occurred in unsaturated fatty acids. A minor fatty acid constituent (16:1) increased from 0.09 to 1.99 nanomoles per coleoptile between days three and seven in air. This component was never observed in any fatty acid preparation from anaerobic coleoptiles. The major phospholipids under all conditions were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid. A small amount of unidentified phosphoester, not present on thin layer chromatography plates from aerobic coleoptiles, was seen in extracts of anaerobic coleoptiles. The fatty acyl substituents of each of the phospholipids were analyzed at days three and seven in coleoptiles grown aerobically and in anoxia. Each phospholipid had its own distinctive fatty acid composition which remained fairly constant under all treatments; 16:0 and 18:2 were the most abundant fatty acids in every phospholipid class. In air, the percentages of total fatty acids that were in the phospholipids were 86% on day three and 87% on day seven. In anoxia, the values at the corresponding ages were 47 and 57%. Since no net synthesis of unsaturated fatty acids occurred in anaerobic conditions, the small increase in total unsaturated acids in the phospholipids between days three and seven must have occurred at the expense of fatty acids preexisting in the neutral lipid. No unusual pathways of biosynthesis or unusual precursors are required to explain the presence of unsaturated fatty acids in the rice coleoptile. The present study and results of experiments where coleoptiles were fed [14C]acetate (BB Vartapetian et al. 1978 Plant Sci Lett 13:321-328) clearly show that unsaturated fatty acid synthesis in rice coleoptiles requires O2, as it does in other plants.  相似文献   

20.
We analyzed the growth rate and the cell wall properties of coleoptiles of rice seedlings grown at 23.6 degrees C for 68.5, 91.5 and 136 h during the Space Shuttle STS-95 mission. In space, elongation growth of coleoptiles was stimulated and the cell wall extensibility increased. Also, the levels of the cell wall polysaccharides per unit length of coleoptiles and the relative content of the high molecular mass matrix polysaccharides decreased in space. These differences in the cell wall polysaccharides could be involved in increasing the cell wall extensibility, leading to growth stimulation of rice coleoptiles in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号